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ABSTRACT 

A theory of particle symmetries is proposed based on general prin- 
ciples of quantum mechanics and special relativity. Starting with a 
modest generalization of the Poincard group and using techniques of 
group theory and operator algebras, it is shown how to construct 
composite-particle state vectors labeled by external ( i.e., pertaining to 
space-time properties ) and internal quantum numbers of physical sig- 
nificance. Macroscopic space-time behaves in exactly the same manner 
under both the Poincarh group and its generalization, the augmented 
Poincarh group. It is found that there exists a hierarchy of groups, 
S p ( 1 )  c S p ( 2 )  c S p ( 3 )  c . . . , which characterizes internal sym- 
metries of the composite particles. These groups are all noncompact. 
However, it is argued that physical particle states are characterized 
by the compact subhierarchy of unitary groups U ( 1 )  c U (2 )  c 
U ( 3 )  c * .  * . Thus, it is shown that the essential features of 
fundamental-particle symmetries can be derived in a general way from 
basic properties of space-time. These results are believed to form a 
theoretical framework for attacking dynamical problems such as the 
correlation of masses and spins with internal quantum numbers fur- 
nished by the hierarchy of unitary groups. 

@&> 

1. INTRODUCTION 

This report is the first of a projected series in which we 
attempt to construct a theory of fundamental particles’ 
and their interactions starting with a minimum of axioms. 
We assume that fundamental physical processes are gov- 
erned by the laws of quantum mechanics and special 
relativity. This much, and usually more, is of course 
postulated in most relativistic particle theories. The dis- 
tinguishing feature of our work is its mathematical 
methodology, which may be summarized by the phrase 

‘BY “fundamental particles” (rather than “elementary,” an adjective 
to be used later in a more technical sense) we mean photons, lep- 
tons, hadrons, nuclei, etc. 

“representation theory of groups on Hilbert spaces.” The 
two concepts, group and Hilbert space, respectively em- 
body the mathematical essence of special relativity and 
quantum mechanics. It is only natural that they should 
be the primary objects of attention.2 

The art of theoretical physics has reached the stage 
where it is no longer necessary for physicists to apologize 
for the mathematical sophistication of techniques used in 

‘Proposals to make a systematic study of representations of the 
Poincarb group of special relativity have been made by Dirac. 
See Ref. 1. 
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the solution of physical problems. Still, simplicity and 
elegance of physical and mathematical ideas are to be 
strived for even though not always possible to attain. 
Keeping these two desiderata in mind, we have decided 
to explore the possibilities of formulating a theory of par- 
ticles based not on the traditional notion of quantum 
fields but directly on operator algebras associated with 
representations of the group of special relativity. One of 
the motives for attempting this task is our desire to intro- 
duce a new and hitherto untried approach to particle 
physics in the hope that practical calculational schemes 
will eventually emerge.3 

There are several fundamental problems facing any 
comprehensive theory of particles. Briefly stated, they are 
as follows. First, there is the problem of the origin of 
so-called internal symmetries associated with quantum 
numbers characterizing particles observed in n a t ~ r e . ~  
Secondly, one is faced with the formulation and solution 
of the stability problem. More specifically, one would like 
to understand why only a small subset of all possible 
states apparently allowed by quantum mechanics and 
special relativity are realized in nature in the form of 
reasonably long-lived particles. The two problems taken 
together might be said to constitute that of calculating 
the “mass spectrum” of particles. Thirdly, the known 
hierarchy of strong, electromagnetic, weak, and gravita- 
tional interactions should find a theoretical explanation. 
Associated with this is the fourth problem, discovering 
the reason for the known striking correlations between 
the strengths of different interactions and the various 
experimentally observed conservation laws. The last major 
problem is of course the calculation of scattering ampli- 
tudes for strong-interaction physics, where perturbational 
techniques apparently fail and techniques based on dis- 
persion theory are unbelievably complicated except in the 
simplest physical cases. All these problems are mutually 
interdependent, and it is difficult to see a priori how one 
could be solved without at least partially solving the 
others. 

We shall not review the present theoretical situation 
concerning these problems except to note that some prog- 
ress has been made in the solution of all of them save the 
third and the fourth; so far they remain unassailable. It 
is not that there is a lack of phenomcmological theories 
corrclating known experirncntal data. What we do not 
understand is the origin of the huge differenccs in the 

‘We have in mind possible alternatives to the dispersioti-th(,orctic 
iipproacli to strong-inter;ic.tion dynamics. 
’Externiil quantum numbers such as mass and spin are adcqit;lt+ 
explnincd as being invnriants of the Poincari: group. 
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numerical values of coupling constants characterizing 
the different interactions. We shall offer some speculations 
on this matter in the last section of this report. In the 
meantime, we wish to examine more closely the first 
problem on the list. 

There is an overwhelming amount of evidence that 
internal and external or space-time symmetries are inti- 
mately related. Hence there have been numerous attempts5 
to extend the external symmetry group, the Poincark 
group of special relativity, in such a way as to accommo- 
date internal symmetries within its fold. This procedure 
meets with the great difficulty of reconciling the observed 
particle multiplet mass splitting with the invariance of 
internal quantum numbers under Poincark (or inhomo- 
geneous Lorentz) transformations (see Ref. 3-6). This 
difficulty has apparently been resolved by an extension 
scheme recently suggested by Ottoson et al. (Ref. 7 ) .  In 
any case, such proposed group extensions do  not really 
explain internal symmetries in any fundamental way; they 
merely lump external and internal symmetry groups to- 
gether into a “supergroup.” A more satisfying explanation 
of internal symmetries would be obtained if one could 
show how they originate from the four-dimensional space- 
time, if that is indeed their origin. Thus attempts are 
currently being made‘; to derive internal symmetries of 
strongly interacting particles by means of self-consistent 
calculations in the spirit of the bootstrap philosophy (see 
Ref. 9). The results of these attempts are admittedly 
encouraging although far from conclusive. The difficulty 
is of course that bootstrap calculations are very strongly 
model-dependent because of the still primitive state of 
strong-interaction dynamical theory. The thought occurs 
that perhaps the solution of the internal symmetries prob- 
lem should be looked for elsewhere. We know that exter- 
nal states of free particles are determined purely by 
kinematics. Thus all positive values of m?, thc eigenvalue 
of one of the Casimir operators of the Poincark group (see 
Section 111), are kinematically possible;’ however, only 
a very small subset of positive-m2 representations are 
experimentally seen as free stable particles. Could it be 
that a similar situation occurs in the realm of internal 
symmetries? That is to say, could it be that possible, 
although not necessarily physically realized, internal states 
are also determined by considerations independent of 
dynamics? Putting it yet another way, is it possible to 

“For recent work on this matter see Ref. 2. 
“A srimmary of these efforts is given by Ref. 8. 
’We are restricting ourselves to unitary reprcsmtations of the 
Poincark group, since only these can correspond to stable physical 
systems (and only for mass squared m’ 0). 
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construct a physically realistic theory of internal particle 
symmetries, based solely on the geometrical properties of 
space-time, providing a basis upon which a dynamical 
theory of particles may later be built? We believe that the 
answer is affirmative; the remainder of this report is 
devoted to a substantiation of this belief. 

As we have already mentioned, our theory is based on 
certain operator algebras originating from various repre- 
sentations of the Poincard group or groups related to it. 
Broadly speaking, any operator theory has two aspects 
to it: algebraic and analytic. Here we shall be concerned 
with the first one. Future work of this series will treat the 
dynamics of particles; there the “analytic” properties of 
operators (such as boundedness, convergence, continuity, 
etc.) are of very great importance because one has to deal 
with matrix elements of operators. Our treatment of inter- 
nal symmetries in this work might therefore be viewed by 
the more mathematically inclined readers as insufficiently 
rigorous since we fail to exhibit the domains and ranges 
associated with various (unbounded) operators. We intend 

to remedy this mathematical deficiency in future work. 
Our primary interest at present is the development, be it 
somewhat mathematically nonrigorous, of a physical idea 
to be formulated in the next section. 

Briefly, the plan of the report is the following. In Sec- 
tion I1 we formulate our theory in an intuitive fashion 
emphasizing the basic physical and mathematical ideas. 
The notation and some definitions and results from the 
theories of Lie algebras and of unitary representations of 
the restricted Poincard group form the topic of Section 111. 
The basic group of our theory is derived and discussed 
in Section IV. Definitions and results of mostly auxiliary 
mathematical character on tensor product representations 
of groups are contained in Section V. The main results of 
this report are presented in Section VI; there we obtain 
a hierarchy of internal symmetry schemes and discuss the 
construction of state vectors characterized by external and 
internal quantum numbers. The final section is devoted 
to a discussion of our results as well as to speculations 
on their consequences. 

II. PHYSICAL FORMULATION 

The purpose of this section is to provide a physical 
and heuristic mathematical formulation of the theory. We 
shall strive to present an intuitive description of the 
physics involved, leaving tlie more precise mathematical 
development of the theory to the following sections. 

The foundations of our work are the theories of quan- 
tum mechanics and special relativity, as already pointed 
out in the last section. Let us very briefly recall the basic 
concepts involved.8 In the usual formulation of quantum 
mechanics, the state of a physical system is mathemati- 
cally described by a ray cp in some Hilbert space 6, i.e., 
by the totality of vectors eia+ in @, where (Y is real and 
4 is a unit vector (the norm 1 1 + / 1  = (+, +)’/$ = 1). The inner 
product (9,cp) gives the probability amplitude for finding 
the system in the state 9 given that it is in the state 9, the 
probability of this being l(+,q)l2. To each physical ob- 
servable there corresponds an hermitian operator H acting 
on 8; (9, Hcp) = (+, H + )  represents the expectation value 
of this observable in the state described by cp. The con- 

*For a more extensive review see Ref. 10. 

verse is not true: there exist hermitian operators corre- 
sponding to no physical observables (see Ref. 11 and 12). 

The theory of special relativity is introduced in the 
following way. If S and S’ are two Lorentz frames, then 
we say that observers situated in these two frames are 
equivalent. It is now assumed that the physics is the 
same for all equivalent observers. Thus, if 9 and 9 
represent the states of a physical system in the language 
of an observer in the frame S, and if cp‘ and 9‘ represent 
respectively those of an observer in S‘, then it is assumed 
that 

It follows (see Ref. 13) that the rays cp, 9 and cp’, 9’ are 
connected by either a unitary or an antiunitary transfor- 
mation depending solely on the two frames S’ and S: 

3 
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where L is the (inhomogeneous, in general) Lorentz 
transformation from S to S’. If S” is yet another frame 
with rays q” and 9” describing our physical system, and 
if L’ and L” = L’L are the Lorentz transformations from 
S‘ to S“ and from S to S”, then one has 

Combining these equations with Eq. (l), we can at most 
conclude that 

i.e., the operators T,, form an up-to-a-factor unitary rep- 
resentation9 of the restricted Poincar610 group P, ,  ( = P:) 
on the Hilbert space $7. Only proper orthochronous 
Lorentz transformations, i.e., Lorentz transformations con- 
tinuously connected to the identity, are assumed to be 
meaningful for macroscopic observers. This restriction 
may seem naive and even physically untenable; we shall 
see that this is not the case and that space-time inversions 
shall receive their due attention. As Wigner (Ref. 14) has 
shown, the up-to-a-factor unitary representations of Po 
may be replaced by the unitary representations of its 
universal covering group (see Ref. 15), provided that 
I ($, TL+) I is assumed to be continuous in L at the iden- 
tity. Simply spcaking, the only factors of significance are 
t l  associated with the single- and double-valued repre- 
sentations of P,,, as they are sometimes loosely called. The 
totality of all unitary representations of the restricted 
Poincark group is the subject of our study. 

Among all unitary representations of Po,  the irreducible 
ones play a dominant role. They are in a sense basic: an 
arbitrary unitary representation can be expressed in 
terms of the irreducible ones.” The fact that the state 
vectors of an irreducible representation of P ,  are charac- 
terized by fixed values of mass and spin (at least for the 
so-called “physical” representations) suggests that this 
representation somehow describes an “elementary” physi- 
cal system. Indeed, this is the viewpoint of Newton and 
Wigner (Ref. 17) who define elementary physical systems 
as those whose state vectors transform irreducibly under 
the Poincarb group. As examples of such systems, we may 
mention the stable particles (we arc’ assuming that they 

”Antinnit;iry transformntions by themselvcs fail to form ;i group 
since the product of two snch transformations is a unitary one. 

lowe iise the by now stantlard nomcnclaturc: Lorcntz homogcn- 
eoiis Lorcntz, Poincari. = inhomogencorls Lorentz. 

“This is of course not true for unitary rcprcsentations of an arbi- 
trary gronp; see Ref. 16. 

have infinite lifetimes) : electrons, protons, neutrinos, 
photons, nonradioactive atoms in their ground states, etc. 
A neutron, on the other hand, is not an elementary physi- 
cal system since it is not stable and hence is represented 
by a state vector with a slightly complex rest mass (see 
Ref. 18); such vectors do not belong to any irreducible 
unitary representation of P , .  For all practical purposes, 
however, the neutron and many other particles may con- 
veniently be treated as elementary physical systems. 
Further, it is clear that stability is not synonymous with 
elementarity. Thus, e.g., the system of two free neutrinos 
of different momenta is certainly a stable system although 
not an elementary one. Neither has elementarity anything 
to do with the absence of an internal structure of a physi- 
cal system. A proton, e.g., is an elementary physical sys- 
tem as pointed out above; its structure is revealed by 
various scattering experiments. In fact, there are several 
manifestations of internal structure of fundamental par- 
ticles. First, we have the existence of so-called “nongeo- 
metric” quantum numbers such as the electric charge, 
baryon number, hypercharge, etc. It is believed, although 
not demonstrated, that they somehow characterize the 
internal structure of a particle; this we shall assume as a 
working hypothesis, henceforth calling these quantum 
numbers internal. We shall attempt to show that internal 
quantum numbers are of a purely geometric origin. Sec- 
ondly, as already mentioned above, scattering experiments 
indicate an intricate charge distribution of particles such 
as nucleons. Finally, none of the particles are immutable: 
the interact, transform into each other, form bound states, 
decay, etc. It would be quite hard to see intuitively how 
all this could happen with structureless particles. In fact, 
the hypothesis of Chew and Frautschi (Ref. 19 and 20) 
represents the rather extreme view that all hadrons are 
composite, being bound states or resonances of each other. 
We adhere to their viewpoint, keeping in mind the possi- 
bility that all particles might be composite. This, we 
believe, is not unreasonable in view of the fact that lep- 
tons are known to have charges, magnetic moments, etc., 
just as the hadrons do. 

Granted, then, the compositeness of elementary physical 
systems, we must find a way to describe their internal 
structure in an invariant manner, i.e., in a manner inde- 
pendent of the particular Lorentz frame of an overall 
physical system. To see how this may be done, let us take 
a simple example. Consider two spinless particles of 
momenta p ,  and p , .  If the two particlcs interact neither 
with themselves nor with other particles, then their state 
vector is just the (tensor) product of the state vectors of 
the individual particles: I) = d, ( 1 1 , )  @ + (11-) Now $ docs 
not describe an elemrntary physical system hecaiisr al- 
though $ has a fixed rest mass, nanic.lp m = [(pl -t p 2 ) q 1 5 ,  

4 
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it has no definite angular momentum. However, by 
taking a linear combination of the +’s with various 
p l  and p 2  subject to the restriction pl + p 2  = fixed, one 
can build up a vector with a given integral angular mo- 
mentum. We thus see that an elementary physical system 
can be constructed from a superposition of nonelementary 
ones mathematically represented by tensor products. This 
construction is just the inverse of the familiar mathe- 
matical procedure known as the reduction of a tensor 
product of two irreducible representations of a group into 
irreducible components. The reduction process yields vec- 
tors which transform irreducibly under the group in ques- 
tion and which in addition are labeled by certain quantum 
numbers invariant under all transformations of this group. 
These extra quantum numbers are necessary to remove the 
degeneracy inherent in the reduction process. To indicate 
concretely how this happens, let us consider the three- 
dimensional rotation group. The vectors of the (2j  + 1)- 
dimensional irreducible (unitary) representation of this 
group are + (jm), where j ( j  + 1) is the eigenvalue of J’, the 
square of the total angular momentum operator, and rn 
that of its z-projection J,. The tensor product + ( j7m,)  @ 
+(j.m2) can be written as a linear combination of the 
vectors + (jm; j . j 2 )  belonging to the diff erent-j irreducible 
representations of the rotation group. The labels jl and j 2  
are the “internal” quantum numbers of this “two-particle 
system”; it is clear that they do not change under all 
rotations generated by the “external” operator J = J. + J2.  

The ideas just outlined work just as well in the case of the 
restricted Poincari. group, or, for that matter, of any 
“reasonable” continuous group. It is clear that by reducing 
higher order tensor products, one obtains more and more 
internal quantum numbers. This should not be distressing 
since, after all, a particle, e.g., is a dynamical system with 
an infinite number of degrees of freedom (because it is 
a bound state of an arbitrary number of other particles 
including possibly itself). One may expect that these 
“higher order” internal quantum numbers should manifest 
themselves in future experiments at energies higher than 
are at present available. After all, it is a common phe- 
nomenon in physics that low-energy states of physical 
systems have the simplest possible quantum numbers. 

We see in principle that by the processes of superposi- 
tion (formation of linear combinations of vectors in 6) 
and composition (formation of tensor products) we are 
able to generate irreducible unitary representations of 
the restricted Poincark group whose basis vectors are 
labeled by certain internal quantum numbers invariant 
under external transformations of this group. For a given 
such representation of Pi,, say one labeled by m and s, 
there exist infinitely many distinct sets of basis vectors 
each labeled by different internal quantum numbers. 

Thus although these representations are all equivalent 
under Pi,, i.e., they all !iave the same transformation 
properties under this group, they are by no means physi- 
cally equivalent (see p. 167 of Ref. 1). Indeed, the internal 
quantum numbers serve to indicate the “internal” state 
or configuration of an elementary (under P I , )  physical 
system. It is plausible that jast as there is the group P , ,  
associated with the external quantum numbers (describing 
the “center of mass” or “bu lk  properties of a physical 
system such as mass, momenta, spin, etc.), there might 
also be a group or some similar mathematical object 
associated with internal quantum numbers. As we shall 
see later, this is indeed true, although the derivation of 
this mathematical object is not quite trivial. The point 
is that the above procedure for generating internal quan- 
tum numbers, although straightforward to carry out for 
P , ,  jrst does not yield anything resembling the apparent 
internal symmetries in nature; the matter is discussed in 
Appendix A. One is forced either to discard the whole 
idea of generating internal symmetries by the processes of 
composition and superposition or to look for a generaliza- 
tion of Pel. We have chosen the latter alternative. 

Given two vectors + and + in the Hilbert space 6, their 
superposition a+ + p+ (a,p complex) is again in Q by 
the definition of the Hilbert space. Thus ,fj is closed under 
superposition. However, this is not true for the operation 
of composition because + @ +  is no longer in 6. Since, 
according to our viewpoint, the operation of composition 
is basic, we must introduce a “super-Hilbert” space, Qm, 
in which this operation is closed. This is of course nothing 
new; such spaces are implicitly assumed in all many-body 
quantum theories. Mathematically, they are known as 
infinite tensor products of ordinary Hilbert spaces, and 
they have been studied by von Neumann (Ref. 21); more 
will be said about them in Section V. 

Let us now turn to the question of which irreducible 
representations of P,,  may be expected to be significant. 
In the conventional theories of particles, one distinguishes 
between physical and unphysical representations. The 
physical representations are those with nonnegative mass 
squared; all others are unphysical and therefore are to be 
discarded. We cannot accept this viewpoint any more 
than we can accept the viewpoint that negative energy 
solutions of the Dirac equation are unphysical and there- 
fore uninteresting and unacceptable. We shall build our 
theory on the premise that all irreducible unitary repre- 
sentations of P,,  are important if we are to understand the 
dynamics of particles; the selection of “physical” repre- 
sentations as the ones observed experimentally is to be 
understood on the basis of their stability. In support of 
our viewpoint, we may remark that the so-called imagi- 

5 
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nary mass representations of Po have been shown by 
Wick (Ref. 22) to be closely related to the Regge for- 
malism (Ref. 23). It should also be fairly obvious that 
the attractive and repulsive forces between particles 
mediated by the exchange of virtual particles (m2 < 0) 
may mathematically be interpreted as being associated 
with such representations. These observations lead us to 
believe, to emphasize the point, that a consistent incor- 
poration of all irreducible unitary representations of the 
restricted PoincarA group should result in a theory which 
is just as physical as the correctly interpreted theory of 
negative energy solutions of the Dirac equation. 

For the reasons indicated in the next to last paragraph 
and in order to facilitate the mathematical treatment of 
the various irreducible unitary representations of the 
restricted Poincar6 group, we shall introduce an envelop- 
ing group for it. The idea is simple. The restricted Poincar6 
group Po is embedded into a larger group, called the 
augmented Poincarb group P,lZ of which Po is a proper 
subgroup. Each irreducible unitary representation of P 
provides a unitary representation of P,, which is in gen- 
eral reducible, although it may be made irreducible by a 
proper choice of basis vectors. Under the transformations 
of P ,  the different irreducible unitary representations of 
Po are mixed in a “smooth way. Thus, for example, within 
the framework of P ,  vectors corresponding to states of 
different mass may be transformed into each other in a 
continuous fashion. This amounts to an “analytic continu- 
ation” of state vectors in their momentum eigenvalues. If 
we assume that the S-operator of our theory commutes 
with all the transformations of P (it already does so with 
those of Po) ,  then by means of the transformations of P,  
one may establish a connection between S-matrix elements 
characterized by different values of Lorentz invariants 
constructed from particle momenta. In other words, we 
have a group-theoretical prescription for analytically con- 
tinuing the S-matrix elements in their Lorentz-invariant 
arguments; how this prescription works in detail will be 
shown elsewhere. Whether or not our method of analytic 
continuation is physically meaningful can of course be 
decided only by comparing the results of our computations 
with experiment. It suffices to emphasize now that since 
the analyticity properties of scattering amplitudes reflect 
the dynamics of particles, in going over from the group 
P,, to P we are in some sense “building in” the dynamics 
into our theory. 

Two obvious questions arise: How do we determine 
the enveloping group P, and is it unique? We attempt to 
answer these questions in Section IV. It turns out that 

‘This is not the extended Poinark group PI (in our notation) which 
includes space-time reflections. 

there exists a very natural way which can be used to 
extend the restricted Poincar6 group Po; this extension is 
both maximal (i.e., one cannot extend Po any further) and 
unique. The basic idea of the method is as follows. A uni- 
tary representation of Po on a Hilbert space @ associates 
a unitary operator TL with each (inhomogeneous) Lorentz 
transformation L. Now TL has the form 

exp ( - i ~ l r P , )  exp ( - iwVpMVp/2) 

where P ,  and M,,  are, respectively, the generators of 
space-time translations and rotations; the numbers up and 
o V P  specify the amount of translation and rotation. The 
P ,  and M,, satisfy certain commutation relations but are 
otherwise not unique. If B = { P,, M,,} and 8’ = { PG, Mbv} 
are two distinct sets of generators (i.e., Pa#P,L, 
M,, # ML,) satisfying identical commutation relations, 
then it is clear that they are both equally suitable in 
constructing unitary operators representing Po. If there is 
no relation between B and B’, then there is nothing more 
to say. If, on the other hand, the operators in B and 8’ 
are in some way related to each other, then we may 
expect that the study of such relations might have some 
mathematical and possibly physical significance. One may 
argue that since B and 8’ each lead to a complete class 
of unitary representations of Po, given a unitary repre- 
sentation R constructed with the help of the generators 
from 9 and another unitary representation R’ constructed 
with the help of those from B’, there might exist a unitary 
transformation U connecting the two representations R 
and R’. In other words, given TL in R and T i  in R‘ 
(same L!) ,  we might have 

U-’TLU = T i ,  all L in P ,  (2) 

This equation mathematically expresses the equivalence 
of the two unitary representations R and R’ of Po.  Suppose 
R and R‘ are irreducible under Po and different. Then 
Eq. (2) says that they are equivalent. But this cannot be 
so unless R and R’ are two equivalent unitary representa- 
tions of some larger group P of which Po is a subgroup. 
Thus the existence of U such that Eq. (2) is satisfied for 
R # R’ under Po presupposes the existence of a group P 
such that R and R’ are equivalent under it. 

If we take T ,  to be first a pure infinitesimal translation 
and then a pure infinitesimal rotation, then, to first order, 
we have 

U-’P,U = P; 
(3) 

U-’M,,U = M,Lv 

In other words, we are led to study the set of all U 
taking p p  into P; and M,, into M;, and preserving the 

6 
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commutation relations. It should be clear that the U’S 
form a group; this group is essentially the augmented 
Poincark group P. More precisely, the U’s are the unitary 
operators representing P (with certain qualifications to be 
noted later). The burden of Section IV will be to deter- 
mine the most general form of these unitary operators 
and hence the group P itself. 

As already mentioned, the introduction of P allows one 
to effect a “unification” of all irreducible unitary repre- 
sentations of the restricted PoincarC group Po. It turns out 

that a proper subgroup of P plays a fundamental role in 
our theory. This basic group, denoted by T,  has a very 
simple structure, and yet its representation theory is 
sufficiently rich to allow one to construct all irreducible 
unitary representations of Po and P by means of the proc- 
esses of superposition and composition. The representa- 
tion Hilbert space 8“ (see Section V for its definition) of 
T is the arena in which the development of our theory 
henceforth takes place. It will be seen that by superposi- 
tion and composition we shall be able to construct state 
vectors characterized by both external and internal quan- 
tum numbers of physical significance. 

111. THE POINCAREI GROUP 

In this section we shall briefly review the theory of the 
(restricted) Poincard group13 and of some of its irreducible 
unitary representations in order to establish the notation 
and to collect results which will be needed in the sequel. 

The Lorentz space14 L consists of all real four-vector~’~ 
x = (x,,, x,, xs, x3), xo = t ,  c = 1, together with the quadratic 
form Q defined for each pair x, y E L :  

Q (x, Y) = gp” ( x p  - yp) ( x v  - y v ) ,  P, v = 2 , 3  

The summation convention on repeated dummy indices 
is understood, and the components of the metric tensor are 

The Greek and Latin indices shall run over 0, 1 ,2 ,  3 and 
1, 2, 3, respectively. The raising and lowering of indices 
is accomplished by means of gpv and gpv, both being equal 
numerically for the same set of indices p. We call xo and 
(xi) the time and space parts of x and shall frequently 
write 

l3F0r a more detailed exposition of this theory see Ref. 14 and also 
Ref. 24-28. 

“The nomenclature used is that suggested by Ref. 29. The distinc- 
tion between Lorentz and Minkowski spaces is that in the latter 
one has the imaginary coordinate x4 = ict = iG. 

l5We choose to introduce L in terms of covariant four-vectors xP.  

The scalar product x y of x, y E L  is defined by16 

The vector x is said to be timelike, lightlike (or null), or 
spacelike according as x2 = x x is greater than, equal to, 
or less than zero. 

The Poincarh group P, (the usual notation is P) is the 
group of transformations of lJ into itself of the form 

x + x ‘ = Z x + a  

or, in components, 

xp -+ x; = Ip”xv + all 

which leave Q invariant: 

We denote the elements of P, by (a, I ) ,  where a = (up) is 
a four-vector and 2 can be thought as a 4 X 4 matrix with 
components lpv ,  p labeling the rows and v the columns. 
The group law of P, is 

(a’, 1‘) (a, I )  = (Pa + a’, 1’Z) (5) 

“The scalar product is determined once Q is given: 

x Y = % [Q (0, x )  + Q (0, Y) - Q ( x ,  Y)] 

7 
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The identity is (0 , l )  (0 = zero vector, 1 = unit matrix), 
and the inverse is given by 

(a, I)-' = (-Z-lu, z-1) 

We note the decomposition 

valid for every (a ,  1) 6 PI .  The set of all (a, 1) is an abelian 
normal subgroup of PI, denoted by T,,, of space-time 
translations of L. The set of all (0, I) forms the homogene- 
ous Lorentz (or, briefly, Lorentz) group L , ,  a subgroup 
of P ,  containing all space-time rotations of L. The group 
law (Eq. 5 )  shows that PI is a semi-direct product of 
T,, and L, :  

PI = TI, i< L ,  

The condition of Eq. (4) leads to the restrictions 

d e t l -  k 1  

I l,," I 1 

Of special interest to us is the normal subgroup P,,  (usually 
denoted by P T )  of PI which is the semi-direct product 
of L,, (=  L+r) and T,,, the group L,, consisting of all 1 
satisfying 

2,)'IL fl 

detI = + 1 

The group PI, is a connected Lie group (see Ref. 15), called 
the restricted PoincarC! group. 

As is well known, the study of representations of a Lie 
group can be reduced to that of the Lie algebra of its 
identity componcwt (we Ref. 15) and to the group of 
discrete automorphism of this algebra. An abstract Lie 
algebra S.2 is a nonassociativc algebra (see Ref. 30) over a 
given field K with an operation [ , ] (the commutator 
bracket) d c h c d  for each pair of clements in i! and 
obeying the rulcs 

(i) A, 13 E i! > [A ,  B ]  E i! (closurca) 

(ii) A E S.2 + [ A ,  A]  -- 0 (antisymmc~try) 

(iii) A, H, C E i! =+ [ ( A ,  B ) ,  C ]  
i- [ ( B , C ) , A ]  + [ ( C , A ) , B l  
(Jacobi identity) 

- 0 

A subset B of 2 is called a basis of 2 if every element 
of 2 can be expressed as a linear combination of ele- 
ments of B with coefficients in K .  When dealing with the 
Poincare group or its extensions in the following, the 
field K will be the real field except when stated explicitly 
to the contrary. 

The concept of the (universal) enveloping algebra of 
a Lie algebra S.2 will play a fundamental role in our con- 
siderations. To define it, we first introduce the tensor 
algebra X of 2. It is an associative algebra over K whose 
basis consists of elements of the form 

If Y E X ,  then one defines 

The operation [ 2 ,  - 3  is this distributive and is analogous 
to differentiation or derivation. Let 11s denote by 9 the set 
of all Z E 2 which are of tlie form 

I [ A ,  B ]  - AB +- HA, A ,  B E  2 

Then it is easy to check with the help of tlie Jacobi iden- 
tity that [ T ,  I] E 3 for each T E Z and each I E 3. Thus 
9) is an ideal of 2. The factor algebra 2/91, consisting of 
all elements of X in which elemcnts I c y )  are identified 
with the zero element of ?, is called the (univcrsal) envcl- 
oping algebra E.17 The foregoing construction of E is 
logically necessary since, strictly speaking, the coniniu- 
tator brackct [ A ,  131 is not defined to bc A13 ~ RA 1x~c.ausc 
the symbols AB and BA have no meaning within thcx Lie 
algebra 2 itself. This circumstance of course docs not 
occur when A and B are operators on sonic' vector space; 
then AB is just the usual operator product. 

For the basis B,, of tlie Lie a1gel)ra p,, of the restrictcd 
Poincarb group P , ,  one usually takes thc ten generators P ,  
and A!,, = - A l l , ,  of spacc-timv translations ant1 rota- 
tions,'4 respectively. Thc gcmcmtors arc assuincd to I)(> 
Iic~rmitian in ordcr that tho opcwtors c'sp ( ~ i d ) ,  ct real, 
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P’ mz > o sgn PO 

P: k1 

P*”  i-1 

p’ = 0 C sgn Po 

Oh 0 +-1 

Oh’ 0 fl 

O C ’  > O  fl 

k1 > O  OC 

p‘ -$ < 0 a 

> O  
Q’“’ 

Q’? - 

- Q”“ 

> 114 

X E B,, representing group elements of P ,  be unitary. We 
have the familiar commutation relations: 

5 

0.1.2.. . . 
112.3/2,5/2, ’ . . 

sgn WO h 

* l  O , l ,  2, . ’ . 
tl 112,3/2,5/2, . . * 

- - 
- - 

sgn W,, S 

- - 
- - 

* l  O,l, 2, . ‘ . 
* 1  - 112.112.3/2, . . 

where bracketed indices denote antisymmetrizations; e.g., 

The enveloping algebra E,, of is constructed in the 
way outlined above except that we take - i  times the 
basis elements of &, in forming the products (Eq. 7) in 
order that the coefficients of the basis elements of 65” be 
real. The significance of ECl is, among other things, that it 
contains operators which generate unitary representations 
of P,l. We recall that a unitary representation R of Po on 
a Hilbert space s j  is a group law preserving mapping 
of P,, into the group of unitary operators on 8. Thus 

E :  (a,  I )  + U (a, I )  

It is readily verified by using the commutation relations 
(Eq. 8) and the identities of Appendix B that the unitary 
operators 

U (a ,  I )  = U (a)  U ( I )  
= exp ( --ia P )  exp (-io: M / 2 )  

satisfy Eq. (5) ,  where 

w:  M = w P ~ M ~ ~  

Il l ,  = 

(9) 
1 
2! 

= g,, + wp, + -gP~wppwu, + . . ’ 

The set of all U (a ,  I ) ,  (a, I) E P ~ , ,  thus forms the group 
U ( P , )  isomorphic to P,, and contained in Ell as a subset. 

The operators U ( a , I )  act on vectors belonging to the 
Hilbert space sj. A subspace sj’ of @ is said to be invariant 
under U (PI,) if U (a ,  I )  + E @’ for every E 6’ and for all 
(a ,  I) E P I ) .  If 6’ is an invariant subspace of Q containing 
no other invariant subspaces under U ( P , , )  except ( 0 )  and 
itself, then U ( P , . )  is said to act irreducibly on sj‘, and the 
representation R is said to be irreducible on 6‘. The prob- 
lem of determining irreducible unitary representations of 
P,,  is thus the same as that of finding invariant subspaces 
of s j .  All the irreducible unitary representations of P,, have 
been determined by Wigner (see Ref. 14), and are sum- 
marized in Table 1. The numbers my and -m2s (s + l), 

Table 1. Irreducible unitary representation of restricted Poincar6 group. 

Here, m , p  > 0, sgn x = x / I x I ,  c = W’,  h = I Wl,/Plll,  and 

== W’/PZ = - s (s + 1). 

Primes denote “two-valued representations.” The little group of zero-momentum representations i s  the 
[(3 + 11-dimensional1 lorentz group b; its representations are discussed in Section IV. 

little Group I 
0: (the three-dimensional rotation group) 

little Group 
I 

little Group 

L‘,)’’ (the three-dimensional Lorentz 

group) 

9 
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where m and s are physically interpreted as mass and spin, 
are the eigenvalues of so-called Casimir operators (see 
Ref. 31) (invariants of Po or, more correctly, of Eo) belong- 
ing to Eo: 

P2 = P,PP 

w2 = w,wp 

Here 

+ 1, ( p p o )  = even permutation of (0123); 
- 1, ( p p u )  = odd permutation of (0123); 
0, otherwise 

# v P o  = 

The Casimir operators P 2  and W2 commute with every 
basis element of Po, hence with every element of (Eo and, 
in particular, of V(P,) .  It follows by Schur’s lemma (see 
Ref. 32) that they are constant multiples of the identity 
operator on 6 in every irreducible unitary representation 
of Po. Accordingly, such representations are labeled by 
the eigenvalues of P2 and Wz. However, not all irreducible 
representations are determined by these two Casimir 
operators alone. Further group invariants exist and are 
given in Table I. Here we shall review the representation 
theory of classes Pms and Pp“’ mainly to introduce certain 
concepts which are necessary for further development of 
the theory.l9 

The positive mass squared, positive energy representa- 
tions P y  and p““’ are characterized by the values of 
mass m = +(ma)% > 0 and spin s = 0, V Z ,  1, * . . . These 
two numbers specify the subspace 6 (m, s) of the Hilbert 
space .Q of all unitary representations of Po. Within each 
@(m,s), one may choose a set of basis vectors which 
diagonalize operators commuting among themselves and, 
of course, with P2 and W2. In order that the basis vectors 
be non-degenerate within the framework of Po, we must 

”we follow the work of Shirokov (Ref. 24-28). 

1 0  

find a maximal abelian subalgebra of OO2O and use the 
eigenvalues of its basis operators to label our vectors in 
.@ (m, s). One such subalgebraZ1 has as its basis the oper- 
ators P ,  and W,. We denote their eigenvalues by p a  and 
] P I  h (h = -s, -S + 1, . . . , s is the helicity). Since 
pg = p2 + m2, we may eliminate m and take the state 
vectors I p s h )  as the basis of 6 (m,s). The four-vector p ,  
is of course subject to the restriction p 2  m2 > 0 in this 
case. We adopt the normalization 

(p’s‘h’lpsh) = 6 (p’  - p )  6 r ’ s a h ’ h  

6 (P’ - P )  = 6 ( P i  - Po) 6 (P’ - P) 

In other words, the basis vectors J p s h )  are singular ele- 
ments of 6 (m, s) in the terminology of Appendix C. 

The action of unitary operators representing Po is given 
by 

U (a,  2 )  I psh) = e- ia’  IP 2 D;,,, (R, (1, p ) )  I lpsh’) 
h ‘  

(11) 

where R,  is the Wigner rotation operator (see Ref. 14) 
given in Appendix D. The transformation properties of 
the vectors I p s h )  given by Eq. (11) make use of the 
spherical functions Di, ,, of the three-dimensional rotation 
group 0’ which is the little g r o u p  of timelike momenta, 
i.e., the group of all A E Lo which leave p fixed: A p  = p .  
The D-functions are likewise discussed in Appendix D. 
Unitary representations of P o  with spacelike, lightlike, and 
zero momenta involve different little groups which are 
given in Table I. 

We shall not discuss the extended Poincark group P, 
here since we shall see in the next section that P I  may be 
obtained from Po by adjoining to Po certain discrete auto- 
morphisms (“space-time reflections”) of its Lie algebra, Q0. 

T h i s  corresponds to what Dirac calls “a complete set of commut- 
ing observables”; see Ref. 33. We prefer the standard mathemati- 
cal terminology since, in many cases, it is not at all clear whether 
the operators in a maximal abelian subalgebra of a given algebra 
indeed represent physical observables. In this connection, see 
Ref. 34-35. 

%It should be clear that the choice of a maximal abelian subalgebra 
is in most cases not unique, as in the present case, for instance. 
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IV. THE AUGMENTED PO IN CAR^ GROUP 

This section is devoted to the study of irreducible 
unitary representations of the restricted Poincark group 
P,,  from a unified standpoint. In studying the automorph- 
isms of the Lie algebra Q,! of this group we are led in a 
natural niannc'r to consider an extension of PI,,  the aug- 
mented Poincart. group P. The Lie algebra 9 of P has a 
rather simple structiire and a readily available interpre- 
tation of its new gcmerators. \\le consider in detail the 
representation theory of P and especially that of one of its 
subgroups, T .  

In accordance with tlie ideas of Section 11, we wish to 
investigate the automorpliisms of VI,, i.e., transformations 
of elements in v(, leaving the commntation relations 
(Eq. 8) invariant. Clearly, only linear transformations with 
real coefficients need be considered (with proper regard 
to the i's in the commutators) if is to be carried into 
itself. It shoiild also be clear that it is sufficient to specify 
the transformations for the basis elemcmts of Q,, alone. 
Thus if P++ Pil and AI:,,, + AI!l,,, then we require that 
P;, and AI; satisfy the same commutation relations as P ,  
and AIpv. 

The various autoinorphisms of '$,, may be broadly 
divided into two classes: continuous and discrete. Let us 
first investigate the latter class. We write 

where 

and introduce the transformations 

P,  -+ UP, = PP = (P",  -P)  

U: (12) 
M,, + uhlpv = MP" = (M, -N) 

and 

P , L T P ,  = -P ,  = ( - P " , P )  

T: (13) 
Mrlv -+ ' M P v  = hipv = (M, -N) 

It is easy to see that the commutation relations (Eq. 8) 
are unchanged under these transformations; thus u and T 

are (discrete) automorphisms of 
isms U, T, p ,  and F ,  where 

The set of automorph- 

P,+ PP, = -P ,  = ( -P( , ,  -P) 
p = UT: (14) 

M p v  + P A l p v  = M p v  = (M, N) 

and F is the identity, together with the relations 
E'! ~ ($ = T L  = p2 - - F and UT = T U  = p, forms an abelian 
group, the four-group V (see Ref. 36). Now it is known 
that the factor group P , / P , ,  is isomorphic to V and that 
every element p ,  E P ,  may be written in the form p ,  = upo 
with o E V and p , ,  E P,, .  \Ve see that by taking the restricted 
Poincart. group PI, and adjoining to it the discrete group 
of aiitomorphisms of its Lie algebra Q(,, we have obtained 
the extended Poincark group P, ,  a group of acknowledged 
significance in particle physics. \Ve should not be too 
surprised if, by adjoining further automorphisms of Po 
to P , ,  we should obtain an even larger group of physical 
significance. 

- 

Let us next introduce an anti-automorphism. Define the 
mapping 

P,+YP, = -P ,  
Y :  (15) 

M p  + Y A I p  = - AIFv 

\Vt. see that y2  = F and that y changes the right hand 
sides of all commiitator brackets (Eq. 8) into their nega- 
tives or takes i into -i; this is precisely what we mean 
by an anti-automorphism. It should be clear that u, T, p ,  
and correspond to the parity, strong (or Schwinger's) 
time reversal, strong reflection (or CPT), and charge con- 
jugation (or, more correctly, particle-antiparticle conjuga- 
tion) operations, respectively (see Ref. 10). The Wigner 
or weak time reversal (see Ref. 13) transformation T is 
just T , ( ~  = TY. \\'e shall have more to say about the discrete 
automorphisms and Y later on. 

To begin the discussion of continuous automorphisms 
of Po, consider tlie transformation 

A + A' = U-' (a, 1) AU (a, 1)  (16) 

for A E 'Bill, the basis of Qll, and (a ,  1) E P,, .  This is a mapping 
of an element of into an element of E,,. Using Eq. (8) 
and (B-2), we find 

u-' (a ,  1) P,U ( a ,  2) = I r 1 V P v  

I7-l (a, 1) M,,U (a, 1) = 1,plVu ( A I , ,  + P,,a,,) 

1 1  



JPL TECHNICAL REPORT NO. 32-797 

Thus A' is even in Qll C E,,. It is easy to see that the map- 
ping (Eq. 16) is an automorphism of p,,. Furthermore, 
every Casimir operator of PI, is clearly unaffected by this 
mapping. In other words, irreducible unitary representa- 
tions of P,, are riot mixcd by these transformations; they 
merely effect some kinematical changes of state vectors 
and otherwise do not give anything new. 

For A E p,,, the mapping 

adA: B + [ A , B ] = O ( A ) B ,  BE!&, 

of v0 into itself is callcd the adjoint mapping detcrmincd 
b y  A; hcre (I (A) B is called the Lie derivative of B with 
respect to A (see Appendix B).  One can verify that 
Eq. (16) may be written as 

A + A ' =  E(a,Z)A (17) 

where 

E (a, 1) = exp [it) (amp)]  exp [io ( W : M / 2 ) ]  

with I = e"' as givcn by Eq. (9). The set of all E (a, I) forms 
the group Aut,, (&), a suligroup of the group Aut of 
all automorphisms of $,,. The group law of Aut,, (pi,) is 
just that of P,,, i.c., Aut,, ($I,) = (isomorphic to) P,). The 
only elements of Aut ($,) not in Aut,, (p,,) available to us 
so far are the discrcto automorphisms in 1'. If W E V, then, 
e.g., 

w - ' O ( a * P ) w  = O(a."P) = O ( w a * P )  

so that 

That is to say, Ant,,(Ql,) is a normal or an invariant 
subgroup of Aut,, ($?,)) X V. The E (a, 1) are accordingly 
called invariant ~iutomorpliisins (Ref. 30) of the group 
Aut,, (PI,) X V C Aut (Q,,). The notion of invariant auto- 
morphisms will be important in cliaractcrizing the aug- 
mcntcd PoincarL. group. Lct u s  continue our search for 
further automorphisms of $,,. 

Consider the scale transforinations S, definrd by 

whcrv a is a nonzcro real nrimlicr; it is clcxr that thc. 
commutation relations (Eq. 8) are unchangcd iindcr this 

12 

transformation. The set of all such S, is called tlie scale 
group of automorphisms of VI,. It is an abelian group 
with the rules 

s,s,. = s,,,,. 
1 = s, 

S,' = s, 1 

One could gcweralize tliis groiip by allowing arbitrary non- 
zero complex values of a. This, howwc,r, would destroy the 
hermiticity of the translation genclrators of %(, and would 
lead to non-unitary repwsentations of P , ,  which we wish 
to avoid, at least for tlie time being. Morcovc,r, it is suffi- 
cient to consider the caw (1 > 0 since transformations 
with negative a can lie written as products of S and the 
CPT operator p. 

As discussed in Section 11, we should like to lie able to 
write the transformation P,  -+ d',, in the form I1 'Pu[Tcv = 
CUP,, with some unitary operator dcpcnding on a. This is 
easily accomplished if wc introduce a formally hermitian 
operator D satisfying the commiitation relations 

Then 

= exp ( - iZogaD) 

is the reqiiired unitary (for a > O!) opcntor. To show that 
D indeed exists, we may choosr. thc reprcwntation (spin 
zero case) 

where ?, = ? i p " .  Tlwn the opcrator ~ ip,,?I1 satisfies the 
commutation relations of D and lirncc may be taken as its 
representative. Introduction of spin docs not change our 
conclusions bwause any spin opvrator must commute with 
tlie orbital part ip,,,?, I of Ai , , ,  . LI'c shall encounter thc 
dilation operator D in ii disgriiscd form in Scction VI. 

It is interesting to notc that the scnlr transformations 
do not leave P' invariant and licncc mix thc diff'erent-mass 
irreducible unitary r~,l"rs"ntatioiis of P,).  Tlw introduction 
of scale transformations allows tis to &cct a "unification" 

"This group has recently bern discussed by sever:d authors: see 
Wess (Ref. 37) and Knstnip (Rrf .  38). 
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of these representations. It is obvious that this unification 
is of a very limited nature since, first, the sign of P' is pre- 
served (a > 0 for unitary scale transformations, as noted 
previously), and, secondly, the spin eigenvalues are un- 
affected by D. We must therefore look for automorphisms 
of by means of which each component P ,  may be 
transformed independently of the others so that one may 
obtain a mixing of time-, light-, and spacelike vectors. We 
then may hope that the same automorphisms will allow us 
to unify the different-spin representations of P , , .  We shall 
see that our hopes will be fulfilled. 

In constructing a theory of particles based on unitary 
representations of PI, we must not n priori eliminate the 
up-to-a-factor representations of PI,. This elimination is 
certainly justified by Wigner's theorem (see Ref. 14) when- 
ever we study any single given representation but should 
not be expected to be meaningful when we consider the 
totality of all unitary representations of P,, and the rela- 
tions between them. In other words, we should be con- 
cerned about the relative phases of vectors belonging to 
various representations of P,,. A simple way of doing this 
is to enlarge the Lie algebra p, slightly by adding to it 
an identity operator, I ,  commuting with all the elements 
of Denote the resulting Lie algebra by @;. The Lie 
group Ph corresponding to p:, is the direct product of P,, 
and the group U ,  of complex numbers of unit modulus. As 
we shall see, the introduction of 1 has far-reaching 
consequences. 

W e  now wish to study the automorphisms of @:,. Con- 
sider first those of the subalgebra Z:, = XI, @ { I }  of %:,. 
The most general transformation of momentum four- 
vectors is given by 

P,  + P; = a;P, + v,l 

where uv is a product of a scale factor (Y > 0, a proper 
orthochronous Lorentz transformation l,,,", and an element 
W E V  X {y}, and q, is a real number. The homogeneous 
transformations P ,  -+ a",, have already been discussed; 
let us concentrate on the inhomogeneous case P ,  + P ,  + 
v,Z. In order that this automorphism be of the form of 
Eq. (3) or (17), we introduce the operators X ,  by setting 

The set { I ,  P,, X , ,  AI, , }  forms the basis for a new Lie 
algebra, @, provided X = (X,)  is a vector operator and 
its components commute: 

This is necessary in order that the Jacobi identity be sat- 
isfied. In view of its commutation relations, especially 
those with P,, the vector X may be considered as a rela- 
tivistic time-position (or four-position) operator.':' We 
see by Eq. (18) that it generates momentum displace- 
ments. Conversely, the identities 

show that P generates position displacements. Thus there 
exists a sort of duality between P and X .  We shall have 
more to say about this later. The specification of the dis- 
placement automorphisms generated by E (0) and given 
by Eq. (18) must be supplemented by indicating their 
action on AI,": 

It is now clear that although P!L--+ P;  + v,l is an auto- 
morphism of ?:,, it cannot be one of @:, since by the 
above equation it takes M , ,  into an element outside of 
@:,. Thus, in a way, we are forced to enlarge our original 
Lie algebra Q:, in order to accommodate the automor- 
phism~ E ( v )  and still obey the rilles of the game by 
requiring that the X ,  be the basis elements of some Lie 
algebra. 

We say that a Lie algebra 2 is complete if each of its 
automorphisms continuously connected to the identity 
automorphisms is generated by some element of the en- 
veloping algebra of 2; i.e., all such automorphisms may 
be written as 

2 + E.y2 

E,r = exp (io ( X ) )  

for some X in the enveloping algebra. Each automor- 
phism of 2 is then generated by some WE,, where w is a 
discrete automorphism of 2. It should be clear that 
Aut,, (e), the group of invariant automorphisms of 2, is 

Expanding this expression in terms of v ,  we find 

[ P,, X " ]  = i g p v l  

'"This appellation, though simple and concise, is somewhat mislead- 
ing since the X ,  are not position operators of physical particles. 
The reason for this is that the X ,  do not leave invariant the physi- 
cal subspace of positive energy state vectors. In connection with 
this subject see Ref. 17 and Ref. 39-41. 
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isomorphic to the group {E, : X in the enveloping alge- 
bra of Q } .  A complete Lie algebra 2 has the desirable 
property that all its continuous automorphisms are invari- 
ant and are generated by combinations of operators al- 
ready in 2.3; in a sense, 2 is self-sufficient and cannot be 
extended by the process exemplified in connection with 
936. As we show in Appendix E, the Lie algebra Q is com- 
plete. Associated with Q is a connected Lie group which 
we call the augmented Poincark group P .  We believe that 
P is a group which is physically both relevant and im- 
portant; we shall attempt to substantiate our belief in 
this and the following sections. We may remark that 
Segal (Ref. 42) has pointed out the possible physical sig- 
nificance of P ,  although his motivation for introducing 
and considering it is different from ours. 

We now turn to the investigation of the structure of 
the augmented Poincark group and to the determination 
of its irreducible unitary representations. We collect for 
convenience the commutation relations of the basis ele- 
ments of Q: 

The set { Xk, ,  M , , }  is a basis of a Lie subalgebra Q , of Q 
isomorphic to Q,. $,), the correspondence of course 
being X,, ts P ,  and AI,,, ++ A!,lr. This isomorphism shows 
the previoiisly mcntioned duality between the momentum 
and position space representations of states. 

A comment may be made regarding the identity oper- 
ator of $$. Sincc I commutes with every elcment of Q, 
and since, by assiimption, it is hermitian, it follows that 
its spectrum is the wholc real line. We denote the eigen- 
values of I by  U. It will be convenient to give u an infini- 
tesimal imaginary part: u = u,, + ic, - to < ull < 0 0 ;  the 
choice of thc sign of c is immaterial at the moment. This  
u is ncver zero, and we may define the inverse I - '  (or 111) 
of I as the operator whose eigcwvalues are u I .  

The enveloping a lgdm C of is constructed in the 
way alrcwly described in Section III. We shall ;issiimc 
that C contains I I as well as othcr functions of I .  Lrt 
us definc 

One finds 

The operators LPl, have commutation relations similar to 
those of AI,,"; in fact, the Lie algebra Qf generated by 
9' = {I, Pl1, X,L, L!Ll.} is isomorphic to Q. From the last 
of Eq. (21) we see that the difki-ence AI,, - Lpv com- 
mutes with L,,,. Thus it is natriral to introduce new de -  
ments of @ by defining 

s,, = AIp1, - L/l,. (28) 

We immediately see that 

The set Bff = { I ,  P, , ,  X,,, SJl1) forms the basis for an espe- 
cially simple Lie algebra, call it Qff, in which tlie oper- 
ators SI,, are iincoripled from the remainder of the set. 
The S,,,. generate a Lie algebra isomorphic to that of the 
restricted Lorentz group L,,. The remaining nine oper- 
ators I, P,,, X,, snan a Lie algebra which w c  call tlie trans- 
lation su1)algcbra ? of Q. We see that Qff  splits into a 
direct sum of two Lie algebras: 

This is very pleasant: direct slims of Licx algebras cor- 
respond to direct products of Lie groups whose repre- 
sentations are just products of the representations of their 
individiial factors. Of course, Qff is not isomorphic to Q,,. 
However, their enveloping algebras are isomorphic, and 
this is all that matters since we are mainly interested in 
the unitary transformations contained in 0. This means 
that we are free to use either of the basis sets B or Bff, 
whichever is more convenient in a particular circum- 
stance. The connection bctwecn the two srts is provided 
hy Eq. (20) and (22). 

As it should be clear from their commutation relations, 
Id!Iv and S,,, are rcspc,ctivcly the relativistic orbital and 
spin angular momcmtiim tensor operators. Let us con- 
sider their relation to various othcr opc'rators in @. Recall 
that the dual Alu of a tensor Aplr is defined by the formiila 

14 
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From this we find 

1 u 

A p v  = - 2 ~ p v p u  AP” 

with the help of 

Epvpo  EavuS = -2! 6;: = -2 (6 ‘8’ - 6 ’8.) 
P *  P U  

From Eq. (10) and (22) we see that the polarization 
operator W, may be written as 

N - 
W ,  = M,,P” = S,,P” 

- 
since LpVPv  = 0. It is possible to introduce another com- 
position of S,, and P”:  

We find the following relations between the various 
operators : 

The vector operators W and Q lie in a hyperplane orthog- 
onal to P :  

W P = Q P = 0 

they have a total of six independent components and 
hence may be used to replace the tensor operator SI,, (if 
we allow division by PpPp) .  It should be mentioned that 
Q is related to the c.m. position operator MpVP”/PpPP 
discussed by several authors (Ref. 43-45). We shall not 
make use of this fact. 

Let us consider the structure of X next. Writing 

U ( a , v , a )  = U ( a )  U ( u )  U ( a )  

U (a) = exp ( - iaZ) 

U ( v )  = exp ( - iv  X) 

U ( a )  = exp(- ia*P)  

and using the commutation relations (Eq. 19), we find 

U (a’, v’, a’) u (a, u, a)  = u (a’ + a + a’ u, 21’ + 0, a’ + a) 
(25) 

Thus the unitary operators U (a, v ,  a)  form a group. We 
define the translation subgroup T of P to be the group 
of all triples (CY, v ,a ) ,  where - co < a < co and v and a 
are real four-vectors, satisfying a group law which is the 
inverse image of Eq. (W).  

(a’, v’, a’) (a, u, a) = (a’ + a + a’ u, v’ + 0, a’ + a) 

(26) 

In particular, the inverse elements of T are given by 

(a,u,a)-l  = (-a + a - v ,  - v ,  -a) 

To have a more concrete characterization of T ,  we note 
that with each (a, v,  a)  6 T we may associate a real 6 X 6 
matrix of the form 

where Z, is the unit 4 X 4 matrix, a is a column vector 
with the entries a,,, a,, a,, a,, top to bottom, and ’i; is the 
row vector ( u ~ ’ ,  v’ ,  v9,  v : ( )  = (u,,, -vl ,  -vy ,  -v:i). One can 
easily verify that the matrices (Eq. 27) satisfy the group 
law (Eq. 26). We call T the basic group of our theory 
for reasons which will become apparent in later sections. 
We note that 2, the Lie algebra of T ,  is a relativistic 
generalization of the canonical commutation relations 

by the addition of a bracket involving the energy and 
time operators. 

In order to construct unitary representations of T ,  we 
note that the set { I ,  P,}  forms the basis of a maximal 
abelian subalgebra of E, and hence its elements may 
simultaneously be diagonalized: 

The identity operator is in fact a Casimir operator of T 
and so its eigenvalues serve to distinguish the different 
irreducible representations of T .  Defining the inner prod- 
uct of two eigenvectors of Z and P, to be 

(a’p’Jq)  = 6 (a’ - a) 6 (p’  - p )  (28) 
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we obtain a generalized Hilbert space Qp spanned by all 
I up) ,  - w < Re u, p < w , I Im u I -+ 0. Alternately, we 
may choose to diagonalize {I, X,} : 

satisfies the equality between the second and fourth ex- 
pressions in Eq. (30). W e  have the orthogonality relation 

Now we have the Hilbert space $., c Q/. spanned by the 
vectors lux) with the inner product 

(U’X’ I ox) = 6 (0’ - u)  6 (x’ - x) (29) 

Other maximal abelian subalgebras are possible and will 
be discussed later. 

Consider now the transformation properties of our new 
state vectors. It is trivial that 

Also 1 { l J  ( v )  I u p ) }  = U{ l7 ( v )  I u p ) }  so that wc may ~7ritv 

setting thc arbitrary phasc c,qiial to mro. Similarly, we 
obtain 

To find the transformation cocfficient between I up) ant1 
I CY), we note the following string of equalities: 

(u’p’ I up) = 1 clu” 1 dx (u’p’ I U ” X )  (0”x I up) 

= 8 (u’ - u)  6 (p’ - p )  

in agreement with Eq. (28). We shall identify the iso- 
morphic Hilbert spaces 9,. and ~ 3 . ~  and simply write 8. 
The sets I u p )  and I ux) may then be regarded as just two 
different bases of 8 related to each other by Eq. (31). 
We record the unitary transformation properties of the 
basis vectors: 

A concrete form of unitary representations of T is ob- 
tained by the following construction. Let us introduce 
the correspondence 

and the inner product 

The set of all +u,,(x) for fixed u forms the basis of the 
(gcneralized) Hilbert subspace ,‘&, of -9, irreducible un- 
der T .  Since +ul, (x) = +.<,-/, (x), we see that irreducible 
representations of T characterized by u and -U are 
equivalent. Hence it will suffice in the future to consider 
only the positive-u represent, ‘1 t’ ions. 

The structure of L,, is considerably more complicated 
than that of T .  All the irrcduciblc unitary representations 
f,,, arc’ known (Ref. 46) and arc classified by the eigen- 
v a l n r ~  of its two Casimir opcwtors I; and G. \Vriting 

16 



JPL TECHNICAL REPORT NO. 32-797 

they can be expressed as follows: 

If we use the operators P,, W,, and Q, insteac o 
then we find the alternate covariant expressions 

F = ( W z  - Q ‘ ) ) / P A  

G = 2 W * Q / P 2  

in every representation of the augmented Poincarh group 
in which P 2  is chosen to be diagonal and not equal to 
zero. We conventionally choose S z  and S, for the basis of 
a maximal abelian subalgebra of the enveloping algebra 
of 2,). Then we may introduce the vectors I kvjp)  defined 
by the following eigenvalue equations: 

( F ,  G, S2, S,) I kvjp)  = (1 + V ?  - k’, 2kv,  j ( j  + l ) ,  p )  1 kvjp)  

Here 

i = k , k + l , k + 2 , .  . . 

= j , j  - 1,  . . . , - j  + 1, - j  

The numbers k and v determine the following classes of 
irreducible unitary representations of L,, : 

(i) k = 0, = i 

(ii) k = 0, 1 0  

(iii) k = 0, v = ivo,  0 < vo  < 1 

(iv) k = 1 , 2 , 3 ,  . . . , - o o < v < o o  

(v) k = %,%,%, . . ‘ , - 0 0  < v <  00 

The representation (i) is the trivial or the identity repre- 
sentation. All representations are single-valued except for 
( v )  which is double-valued. 

The set { I k v j p ) }  (with the above restrictions on k ,  v ,  

j ,  and p)  forms a basis for the Hilbert space 8 (L,)) of 
unitary representations of L,  with the inner product 

Consider now unitary transformations of the basis vec- 
tors I kvjp) .  In view of the commutation relations 

[Si, Si] = ieijriSl, 

[ S i ,  T j ]  = iei jsTk 

[ T i , T j ]  = -ieijkSk 

the operators Si span a subalgebra of 2, isomorphic to the 
Lie algebra of the three-dimensional rotation group 0:. If 
R E 0; , then evidently 

where the rotation matrices DL,, are given in Appendix D. 
In terms of Euler angles, we may write 

U ( R )  = exp ( -~cYS,)  exp (-ips,) exp ( -iySir) (35) 

Every “space-time” rotation il can be factored (Ref. 14 
and 46) into a product of two spatial rotations and a pure 
Lorentz transformation in the z-direction: 

A = R’ZR 

with 

U (R’) = exp ( - ~cu’S:,) exp ( - ip’S,) 

U (Z )  = exp ( - i<T,) 

and I J  ( R )  is given by Eq. (35) .  The relation between the 
parameters CY’, /3’, [‘, CY, /3, y and A; is given in Appendix D. 
Noting that [S,T,] = 0, we see that U (2) does not mix 
the p-eigenvalues so that 

where the 3-functions are also given in Appendix D. It 
follows that for an arbitrary Lorentz transformation 
A E L ~ ,  we have 

U (A)  1 k v j p )  = 2 Q’;Y,. j p  (A) I kvj’p’) 
j ’ p ’  

We are now in a position to construct irreducible uni- 
tary representations of P”.  In view of Eq. ( 2 4 )  and the 
remarks immediately following this isomorphism, we have 

P” c T X L,, 
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Introduce the Hilbert space $ (P”) = $ (T) X 6 (Lo)  by 
exhibiting its basic vectors: 

The inner product in $(P”) is by definition 

(&pip I u’k’v’p’j’p’) = (up I u’p’) ( h i p  I k’v’j’p’) 

The numbers U, k, and v label the different irreducible 
representations of P”. It should be clear from the pre- 
ceding construction that we have found aU such repre- 
sentations. An arbitrary element of P” is the quadruplet 
(a, u, a, A) satisfying the group law 

(a’, U’, a’, A’) (a, i), a, A) 

= (a’ + a + a’ U, U’ + U, a’ + a, A’A) 

The unitary operators representing P” are of the form 

U ( a , u , a , A )  = u(a,u,a)  U(A)  = U ( A )  U ( a , u , a )  

where 

u ( A )  = exp(-&:S/2) 

1 
21 A,, = (en),, = g,, + a,, + - gPuaPp no, + . * . 

Using previous results, it is trivially found that 

u (a, 0, a, 4 I UkV1)1’P) 

Z Q$Yp, j p  (A) 1 ukv P +  ut^ j ‘ ~ ‘ )  
i ‘ p ’  

It should be clear that an irreducible unitary repre- 
sentation of P” of the above form furnishes a unitary, 
although in general reducible, representation of Po. The 
point is that Bo is a Lie subalgebra of Sp but not of @“ 
so that the vectors in ,fj (P”), whose construction is based 
on !@”, will in general be mixed under the transforma- 
tions of Po generated by the operators in bo. What we 
obviously need is a different maximal abelian subalgebra 
suitable for the representations of Po. In other words, 
we want the unitary operators of P to have the form 

- - e - iuoe - ia -p  

U (a, U, (I, 1) = U (a, U) U (a, 1) 

U (a, u)  = exp ( - iaZ) exp ( - iu OX) 

U (a, I )  = exp ( - h o p )  exp (-&:M/2) 

clearly exhibiting the subgroup nature of the restricted 
Poincar6 group. The augmented Poincarh group P is de- 
fined as the group of all quadruplets (a, i), a, 2) with the 
group law 

(a’, u’, a’, Z’) (a, i), a, 1)  

= (a’ + cy + a’ J’u, V’ + Z’i), U’ + Z’U, 2’1) 

which may be worked out by considering the unitary 
representatives of these quadruplets. Just as T, the group 
P may be realized as the group of all 6 X 6 real matrices 
of the formz4 

where 

so that ul is a row vector with components ( Z 1 ) P  = uvZv~. 

The vectors lukvpjp) are eigenvectors of the Casimir 
operators Z, F, G and of P,, S2, S 3  which form the basis 
of a maximal abelian subalgebra of 0. Another such sub- 
algebra is spanned by P,, W2, and Wo(Pz)-% Let us de- 
note the eigenvectors of these operators by (ukvpsh); 
thus 

( I ,  F ,  G, P p ,  W2, Wo (P’)-S) I ukvpsh) 

= (u, 1 + V* - k2, 2kv, p,, --‘s ( S  + l), h) I ukvpsh) 

Keeping U, k,  v fixed and restricting the transformation 
of P to those of its subgroup Po, we obviously obtain 
irreducible unitary representations of Po. I n  fact, any 
vector of the form 

where W o k v  is a complex function of its arguments, trans- 
forms irreducibly under Po.  The basis vectors lukvpsh) 
span the representation Hilbert space $ (P) of P and are 

“The author is indebted to Dr. M. M. Saffren for a discussion on 
matrix realizations of P. 
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v 
V’ 

related to the basis vectors lukvpjp) of @ ( P ” )  by the 
unitary transformation 

v V‘ 

V’ v 

with the M-functions computed in Appendix F. In other 
words, @ (P) is isomorphic to @ (P”), and hence the rep- 
resentations of P” are indeed representations of P. If 
(a, u, a, 1) e P, then, according to the results of Section I11 
and Appendix D, we have 

for the case of p,, p z  > 0. From Appendix F, on the other 
hand, we get for sufficiently small u 

u (u) I ukvlpsh”) 

= z (Ip, 0 )  I akv Ip + oz) s’h’) 
s‘h‘  

with the 2JI-functions discussed there. Putting everything 
together, we obtain 

This formula shows that the transformations of P indeed 
mix irreducible unitary representations of Po labeled by 
different spin values as announced in Section 11. 

Finally, we wish to consider the question of discrete 
automorphisms anew within the framework of the aug- 
mented Poincad group. In order that the automorphisms 
u, 7, and p of Po, given by Eq. (12), (13), and (14), be 

those of 8, the X, must transform in the same way as 
the P,, and Z must stay unchanged: 

u: X , ~ “ X , = X ~ = ( X , , - X )  

7 :  x,+ ‘ X ,  = -xp = (-X,,X) 

p: Xp + P X p  = -Xp = (-Xo, -X) 

This set of transformations is of course consistent with 
the duality between P, and X,. The anti-automorphism y ,  
given by Eq. (15), must transform the i in [P,, X,] = igpvZ 
into -i; this can be accomplished either by having 
X, + X,, Z + Z or X, + -Xv, Z + -I. We choose the sec- 
ond alternative in order to maintain the duality: 

y :  P,+ -P,,X,-+ -x,,z+ -1  

In addition to the above symmetries of 9, we have 
further discrete automorphisms and anti-automorphisms 
generated by the “duality-breaking’’ automorphism 6 
of a: 

6: P,+ P,,X,+ -x,,z+ -z 

Let V ’ = { o ‘ : ~ ‘ = 6 ~ , o ~ V } .  Then theset  W = V U V ’  
is an abelian group of order 8 with the multiplication 
table 

Here 

* I v  V‘ 

V’, e.g., is the set of elements of he form W’ 

with 0 E V and 0’ E V‘. Since w-’Vw E V for an arbitrary 
W E W ,  it follows that V is a normal subgroup of W. It 
should be clear that W is a group of discrete automor- 
phisms not only of but also of 8. Moreover, every anti- 
automorphism of ‘$3 has the form y * w, w E W. 
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V. TENSOR PRODUCT REPRESENTATIONS 

This section is primarily of a mathematical character. 
Our principal aim here is to present the rudiments of the 
group representation theory on tensor product spaces. 
We shall use the basic group T as an example; the treat- 
ment may easily be adapted to other  group^.'^ 

We shall be dealing with the basic state vectors 
[up) for which we introduce the abbreviated notation 

+A, h = (a, p ) .  The (generalized) Hilbert space 6 intro- 
duced in Section IV is spanned by these (singular) basis 
vectors. We write 

as a shorthand for Eq. (28). Every element $ E * $  may be 
expressed in the form 

where J d h  = J d ~ J d p  and the CA are complex numbers 
or distributions. We recall that $ is said to be regular 
whenever 

Let $ and x be two elements of 8. The tensor product 
of $ and X ,  denoted by $ @ X ,  is a mapping of the pair 
$, x into a linear vector space V. By definition, the tensor 
product is linear in each of its factors: 

If we introduce thc inner prodllct 

tlieii the linear closure of V is a Hilbert space, thc tensor 
product of with itself, denotcd by .$ @ ,$ z= The. 
basis of consists of all tensor products + A l  @ + A 2 ,  

whercl + A l  and + A >  arc basis elements of +. 

T o r  ii rigororis tiiathc.niatic;iI discIissioii of topics r c h t c d  to this 
scction s w  Ref. 47 and 48. 

We may generalize the foregoing by defining higher 
order tensor products. Thus for an arbitrary integer 
n l 1 ,  

@('I) = @ @  . . . @ @  (ntimes) 

has for its basis the vectors 

where the + A k  are the basis vectors of 6; here @ ( l )  = 6. 
The inner product in @(n) is by definition 

The most general element in @ c n )  is of the form 

The vector $ is regular if and only if 

Let us consider operators on * $ ( ) l )  for some fixed n 2 1. 
Given the set of operators {Al,A,, . . . ,A,,} on .$ to ,$, 
we define the tensor product operator A,  @ . . . @A,l 
on a $ ( ' 1 )  to by 

for each @ . . . @ for which the right- 
hand side above is defined. It is easy to verify that 
A,  @ . .  . . @A,, is a linear operator whenever each 
A,,k = 1, . . . ,n,  is. Of particular interest to tis are the 
operators 

where A is in the kth place. and each of thr 11 ~- 1 1's is 
the identity operator on ,$ leaving each vector of ,(> fixed. 
The set of all A('1) (k), A E  Z, forms the Lie algebra 
2'") (k) isomorphic to Z. It is casy to see that 201) (k) 
is orthogonal to z(")  ( I )  whenever k # 1; i.e., each element 
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of 
the basis of X ( n )  (k) we have the set 

(k) commutes with every element of Z(n) (2). For 

The Lie algebra spanned by the operators in 

is called the external Lie algebra ZLt: of $ ( " ) .  

Unitary representations of T on @(7L) are generated by 
the basis elements of S6::. Thus, e.g., 

U ( n )  (a) = exp [ - iu * P(")] 

with the interpretation 

[P(,) (k)]" = 1 8  . . . @ 1  (ntimes) 

For an arbitrary @ . . . 8 we then have 

Suppose we take the basis vector + A , .  . . A n  E $ ( " ' .  Then 
each factor + A ~  (A, = (Ok, pk)) transforms irreducibly un- 
der T .  But so also does the tensor product + A ~ .  . . A ~ #  

because it is an eigenvector of I ( n )  and P F )  with the 
eigenvalues 0, + . . . + u,I and p , ,  + . . . + pnP. That 
is to say, tensor product representations of irreducible 
unitary representations of T are themselves irreducible. 
This is a very special and fortunate property of the group 
T and is of course a consequence of the additivity of 
1's and P s .  

By its construction, each @ t n )  is closed under super- 
position. This is not true for the operation of composi- 
tion, however. In fact, the tensor product of a vector 
I/("') E @(m) and x ( ~ )  E ,$I(") lies in @ ( " l x r i ) .  As we have men- 
tioned in Section 11, this undesirable lack of closure may 
be remedied by introducing an infinite-fold tensor prod- 
uct Hilbert space $". We define it as follows. For m # a, 
the inner product of any two vectors $ ( J 1 z )  E . $ ( " ' )  and 

x ( l l )  E @ ( ? I )  is by definition equal to zero. The spaces @ c n )  
for different n are thus mutually orthogonal, and one 
may form their direct sum: 

An arbitrary vector $ E @ "  may be written uniquely as 

Thus 

for any two vectors $, x E 4". A vector E @" is regular 
whenever I/ $ / /  < C O .  But this means that each $ ( n )  is 
regular and, moreover, that the series Z, 11 $ ( n )  I /  con- 
verges. The regularity of each +(")  is not sufficient to 
guarantee that of $. 

Operators on $* are defined in a manner analogous 
to that for .$("). Thus, e.g., we shall write 

P , ( k ) = P ; ( k )  = l @  ' ' . @ l @ P , @ l @  

with P ,  in the kth place. Also, 

X 

k = l  

etc. It should be clear that an operator on ,'(") may be 
extended to one on 8" by simply post-multiplying it by 
the identity operator 1 = 1" = 1 8 1 @ . . . on 6":  

From now on we shall always deal with $5" and shall 
regard each $ ( , I )  as a subspace of ,f~" containing vectors 
of the form 

for some $, E % $ ( ' ) .  

As we shall explain later, the state of any physical 
system may be represented by a vector in $5". I t  behooves 
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us therefore to examine the structure of 8“ in some 
detail. Let us write 

The vector +u is clearly in 6“. Applying P , ( k ) ,  we find 
for each k = 1,2, . . . 

P,(k) +u = 0 

and hence 
x z P, (k) +u = P,+u = 0 

6 - 1  

Thus +, is a state of zero total linear momentum. As we 
shall show in Section VI, the total angular momentum 
operator on ,\$* is 

Operating with M,,, on +,, we see that it too gives a zero 
result (since the P,(k) annihilate cU). In other words, 
+,, has the Poincark-invariant properties associated with 
a physical vacuum: 

We shall tentatively assume that +o indeed represents a 
physical vacuum state. Note that with this interpretation 
the physical vacuum is not unique because it is described 
by +, for any sequence u = (uI,  u.’, . . ) provided the 
U, are not all zero. 

Now we show that every vector in &jx may be obtained 
from +u with various u’s. Consider the operator 

Clearly, 

But the set of all O,,+, is a basis of 8“; hence follows the 
truth of the above assertion. We see that the applica- 
tion of an appropriate operator O,, to the vacuum state 
vector +u describes mathematically the “excitation” of 
the vacuum into a state of nonzero linear (and hence 
angular) momenta. We may therefore interpret O,, as a 
creation operator of “particles” with various momenta 
p1,p,, ’ ’ ’ . In particular, e-i‘J’.r’f is the creation oper- 
ator of a basic particle of momentum 11:  

It should hardly be necessary to emphasize that the above 
creation operators have nothing to do with those of bare 
or of physical particles encountercd in field theory. One 
of their peculiar properties, e.g., is that their adjoints 
do not annihilate the vacuum but create particles of 
opposite momentum: 

VI. INTERNAL SYMMETRIES 

This section marks our return to iiiorc physical mat- 
ters. Starting with thc simplest cascy wc! shall construct 
various statr wctors, i n  thc. order of incrcasing coin- 
plcsity, d w a y  h i n g  carc~ful to providc, a s  much physical 
motivation antl intcrprctation as possible. LVc, shall find 
that thc r~~~’r~~sc~’iitatioii thcwry of our basic group T per- 
mits 11s to construct systc.iiiaticnlly stat(, wctors charac- 
terized b y  qiiantuin numbcrs such a s  spin. isospin, baryo11 

22 

number, etc. Moreover, we shall obtain an infinite hier- 
archy of internal symmetry groups according to which 
the various particles occurring in nature may be classi- 
fied. \Vc emphasize that what wc find is the set of all 
Iiossible one-particle states; the physically observed states 
form only a smull subset of these antl are determined by 
the much more difficult dynamical considerations to ap- 
pear elsewhere. 
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Let us start our discussion by considering the simplest 
of all possible state vectors, namely the basic vectors 
lop). As we have already explained in Section IV, for 
fixed u these vectors form a basis for an irreducible uni- 
tary representation of our basic group T .  Physically, the 
vectors I up) describe a system of given four-momentum p 
(which may be timelike, lightlike, or spacelike) with all 
other quantum numbers suppressed, ignored, or un- 
known. The eigenvalue U specifies how the state vec- 
tor behaves under the (unitary) phase transformations 
exp ( -id); the precise physical significance of o can 
only be understood in a dynamical context. It may be 
appropriate, however, to point out that we expect that u 
should be the same (equal to 1) for all physical particles 
in order that [P,,X,] = ig,J (A  = 1) reduce to the ca- 
nonical commutation relations for p, v = 1,2,3.  The Lie 
algebra associated with these basic vector representations 
is of course spanned by I, P,, and X,. Let us define oper- 
ators L,, belonging to the enveloping algebra CF of 1: 

Evidently, L,, is just the orbital angular momentum op- 
erator of this “one-particle” system; moreover, it coin- 
cides with the totcil angular momentum operator Al,,, 
since there are no other angular momentum operators 
to be constructed out of P,, X,,, and 1. If we adjoin 
L,, = AI,, to the basis set { I ,  P,, X ,} ,  then we get a new 
set of operators forming a basis for the Lie algebra Q 
of the augmented Poincari. group P. This set yields only 
the trivial representation of L,,, the reason for this is of 
course that S,, = A l p ,  - L,, = 0. Incidentally, the envel- 
oping algebra of Q is just that of Z, namely E. 

We now turn to the more interesting case of tensor 
products of two basic vectors: I alp,) @I I u,pl). These vec- 
tors span the representation space of the “two-particle” 
Lie algebra 2“’ = 2 (1) @ t (2). We now have available 
the 18 operators I (i), P,  (i), and X ,  (i), i = 1,2. The en- 
veloping algebra of 2‘:) will contain not only oper- 
ators in E(1) and E(2), the enveloping algebras of 
t (1) and Z ( 2 ) ,  but also operators which are mixtures 
of operators from Z ( 1 )  and Z (2). Clearly, the variety of 
interesting operators is now much richer than in the 
single-particle case analyzed above. Of a particular inter- 
est to us are the external operators in E(>):  

I = I(1) + Z(2) 

P,  = P,, (1)  + P,  (2) 

x, = Xp(1) + X p ( 2 )  

As we have already explained, these operators are asso- 
ciated with the overall or “bulk” properties of the two- 
particle system. Clearly, P, is just the total linear four- 
momentum of the system, while X, /2  is just the average 
four-position vector’’ of the two particles. The external 
operators form a Lie algebra, x;;:, which is isomorphic 
to X(>). In fact, all the Lie algebras Z (with various ap- 
pendages) occurring in our theory will be isomorphic to 
each other and to the basic Lie algebra 2; these isomor- 
phisms will henceforth be taken for granted. 

How are we to define the angular momentum oper- 
ators for the case of two particles? We already have 
bl,, (i) = XI, (i) P,, ( i ) / l  (i), i = 1,2, for each of the two 
particles. Now we appeal to our physical experience and 
define the total angular momentum of the two-particle 
system to be the sum of the total (in this case equal to 
the orbital) angular momenta of the individual particles: 

M p  = hi,, (1) + hl,, ( 2 )  (38) 

The orbital angular momentum of the two-particle sys- 
tem is of course 

Let us add L,, to the right-hand side of Eq. (38) and then 
subtract it. The result is 

where 
- 
I =  

- 
P,  = 

x, = 
- 

W e  call the Lie algebra spanned by 7, F,, and 2, the 
internal Lie algebra X(lt!t of the two-particle system. Defi- 
nitions of internal operators are of course not unique; 
they are arbitrary to the extent that i, F,, and x, may be 
multiplied by various - -  functions - of I ( 1 )  and - -  I ( 2 )  subject - 
only to the conditions Xl,P,l/l = S,, and [P,, X,] - = ig,,Z. 
The reason for choosing the particular form of P ,  is its 
simplicity. Equation (39) is interesting because it shows 
that the total angular moinentuin operator of a two- 
particle system contains both orbital and spin contribu- 
tions, the latter arising from internal degrees of freedom 
of this system. The operators SI[l, of course satisfy the 

23 
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commutation relations (Eq. 23). The internal four- 
momentum is essentially (ignoring the 1’s) the relative 
four-momentum between the two particles; 2X is, again 
essentially, the four-position of particle 1 from the aver- 
a m  position of the two particles. 

The Lie algebras E::: and Xydt are easily seen to be 
orthogonal. This means that L,, and S,, commute, as of 
course they should. By combining the operators of E::! 
with the operators S,, from the enveloping algebra of 
Xi::, we obtain a basis for the Lie algebra @ of P .  Now 
we are able to obtain non-trivial representations of the 
Lorentz group Lo in P .  However, reprzsentations with 
k v  = 0 only can be secured because S,,Srv = 0; thus we 
have still not reached the most general case of spin 
angular momentum. 

By the procedure outlined above, we have constructed 
the two mutually orthogonal Lie algebras Sl“,‘, and Z!:: 
whose operators respectively generate external and inter- 
nal transformations of two-particle state vectors. One may 
inquire whether the operators of these two algebras can 
replace those of 2 (1) and Z (2), i.e., whether the envelop- 
ing algebra @’ of ZLii@Z!i), is the same as @, that of 
Z ( l ) @ X ( 2 ) .  It turns out that this is not true. The 
reason - is not hard to see. Given 1 = l(1) + Z (2) and 
I = Z (1) l(2) [ I  (1) + 1 (2)], we cannot uniquely obtain 
l (1)  and l ( 2 )  since both 1 and 7 are symmetric in l ( 1 )  
and l ( 2 ) .  In order to remedy this situation, let us intro- 
duce the operator 

? = 1 ( 1 ) - 1 ( 2 )  

Then 

- -  
The two sets of operators { I ,  P,, X,, Z‘, P,, X,} and 
{Z( i ) ,  P p ( i ) ,  X , ( i ) :  i = 1, 2) are now equivalent, i.e., the 
generators of one set are uniquely expressible in terms of 
the other, and hence both sets generate identical envel- 
oping algebras. Note that 7 is not the commutator of ? 
and X; this fact will not create any difficulties. 

Instead of the operators I (i) and P ,  (i), i = 1,2, we may 
diagonalize I ,  P,, i’, and ?, and hence introduce the state 
vectors 1 a p ; ~ p )  ( T  = U, - a,) which are eigenvectors of 
these ten operators. We impose the standard normaliza- 
tion on the new vectors: 

By an elementary manipulation of the delta functions in 
this expression, one finds 

1.e.. 

if we choose the arbitrary phase factor to be unity. 
Equation (41) effects the reduction of the tensor product 
vector I alpl) @ I a,p,) to a vector irreducible under T; we 
see that this reduction is trivial in the sense that this vector 
already transforms irreducibly under T although the nota- 
tion does not show it. 

The next step in our program of state vector construc- 
tion is to introduce eigenvectors of various spin operators. 
As we have seen in Section IV, we may simultaneously 
diagonalize the following four operators: 

s z  = s(s + 1) 

s:, = p 

Of these, G vanishes. Thus we are left with the three 
operators F ,  S2, and S ,  instead of the four P,; it may 
appear that we may not be able to establish a one-to-one 
correspondence between the spin eigenvectors and the 
vectors I q;~?j). However, we recognize immediately that 
the operators F ,  P-X, and F commute with F ,  S2, and 
S ,  and hence are candidates for diagonalization. Only one 
of the three operators may be chosen to be diagonal, 
since they do not commute. For future convenience, we 
wish to introduce certain linear combinations of these 
operators. Let 

where I , ,  is a constant of dimensions length or inverse 
mass; it may be regarded as a universal constant (the 
fundamental length) of our theory to be used in making 
certain dimensional expressions dimensionless. (It is inter- 
esting to note that with A and I , ,  as fundamental constants 
both the product and the ratio of P and X are fixed: 
P X  + A, P / X  + ~ / l ; . )  We shall henceforth choose our 
units so that 1,) = 1. The conversion factor or the value 
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of I ,  in centimeters is to be determined by comparing ' 

future dynamical calculations with experiment. We find 

EA;,A;I = g,v 

[A;,A;] = 0 
(Ap)* = A; 

We may note that the operators tl, kJ, and A- satisfy 
commutation relations of the operator algebra of a linear 
harmonic oscillator. However, there is no lower bound 
to the eigenvalues of .$l1 since 

is of indefinite sign. i.e., t1 is not positive definite. Now 
we introduce the following Lorentz scalars or invariants : 

Then 

The hermitian operators 

satisfy commutation relations which are recognized as 
those of the generators of the 3-dimensional restricted 
Lorentz group L!:). For a discussion of the representation 
theory of this locally compact Lie group (Ref. 15) we 
refer the reader to Bargmann's classic paper (Ref. 49). 
Here we shall be content with the following observations. 
The group contains a one-parameter compact sub- 
group generated by K ,  = (P' + %)/4T. Irreducible uni- 
tary representations of L(3,) may be labeled by the 
eigenvalues q (discrete or continuous) and K (discrete) 
of its Casimir operator Q = K :  + K ;  - K ;  and the oper- 
ator K3,  respectively. The irreducible unitary representa- 
tions of L$)  and of Lo, the 4-dimensional Lorentz 

group generated by the operators S,,, are closely con- 
nected in virtue of the relation F = 4Q, as we shall show 
later. Thus one may write down the formal expansion 

where 

The quantum numbers p ,  s, and p have the simple physi- 
cal interpretation of linear momentum, spin, and spin 
projection, respectively. The interpretation of K must be 
deferred until we investigate higher order tensor prod- 
ucts. No simple physical interpretation of f appears 
available. However, one can show that state vectors of 
stable physical systems are not eigenvectorsz6 of F but 
are their mixtures. The reason for this is briefly as follows. 
Writing 

we may interpret (x I p ) u  = ( 2 , ~ ) - ~  e - i p . z / u  as the c.m. part 
of a wave function of a composite particle made up of 
two basic particles. The internal part of the wave func- 
tion is just (X)f~sp)o. The trouble with this quantity is 
that, as one may show, it is not square integrable over the 
whole of Z-space, except for discrete values of f .  Hence 
it does not represent a physical particle in the usual sense. 
However, the integral 

can be made square integrable by choosing a suitable 
weight function w ( f )  and hence may represent the inter- 
nal wave function of a composite particle. 

Consider now the Lie algebra '$:Jt of the augmented 
Poincar6 group P spanned by the two-particle external 
operators I ,  P,, X,, and M,, = L,, + S,,. These operators 
generate external unitary transformations which, acting 
on the states I U P ; T f K S p ) ,  mix p ,  s, and p (note that s and p 
are fixed under Tex t ! ) ;  hence these three quantum num- 
bers are external under P .  The remaining quantum 
numbers U, T ,  f ,  and K are unchanged under all trans- 
formations of P and are thus internal (U and T are 
simultaneously external). In other words, the property of 
being an external or internal quantum number is relative; 

"Except possibly for discrete eigenvalues f = 1 - k', k = 0, ?4, 
l:.. . 
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it only makes sense if we specify the group of external 
transformations. To avoid possible misunderstanding, we 
shall occasionally indicate the external group in question 
by a prefix. Thus, in the case under consideration, the 
P-internal Lie algebra @(;2dt is just (1’) @ 2;;). 

We now proceed to generalize our discussion to the 
case of (n + 1)-fold tensor products of the basic state 
vectors for an arbitrary positive integer n. We start with 
the Lie algebra 

spanned by the operators I ( i ) ,  P p ( i )  and X p ( i ) ,  i = 1, 
2, . . . ,n + 1. The external Lie algebra Xl“,:’) is of 
course spanned by 

2::; I ( i )  I ( n + l )  = 

p::l+’) = 2;:: p ,  (i) 
X;+l) = 2:;; X , ( i )  (44) 

This accounts for nine of the operators available in 
X(”+’). The remaining 9n operators must form n mutually 
orthogonal internal Lie algebras. It should be fairly evi- 
dent that they are far from being unique. In fact, consider 
the example of n = 2. Then we have three basic particles 
which may be “coupled” 3! different ways: 

(12) 3, (23) 1, (31) 2, 

(21) 3, (32) 1, (13) 2. 

The couplings in the same column are equivalent in the 
sense that the internal generators of the two schemes 
differ only by minus signs. Let us consider the scheme 
(12)3. Coupling particles 1 and 2, we obtain and 
S(,:,), previously discussed which we may now denote 
by X(,,:, (12) and 2 (, :)), (E), respectively, the superscript (3) 
showing that thcse Lie algebras are associated with a 
three-particle system. We now couple the system (12) 
with the particle 3 and obtain a second Lie algebra, 
L‘,:)), ( 123), with the basis elements 

- 
l(123) = 1(12)1(3)[1(12) + 1(3)] 

P,, (123) = P,, (12) 1 (3) - P ,  (3) 1 (12) 

and similarly for X, (123); hcrc l(12) = I (1)  + 1 (e), etc. 
It is immediately obvioris that 3 I :,’, (12) and X~.:,), (123) arc’ 
orthogonal. Thus we have constructed an external and 
two internal Lie algebras for our special example of  three 

basic particles. It is clear that had we chosen any other 
coupling scheme enumerated above, say (23) 1, we would 
have obtained another pair of mutually orthogonal inter- 
nal Lie algebras, namely, xf,;; (23) and Z!:), (231). Al- 
though the Lie algebras in each pair are orthogonal to 
each other, this is not true for two Lie algebras selected 
from each pair. Thus, e.g., Z!;), (12) and 1(!;),(23) are not 
orthogonal. 

Returning now to the general case, we define the total 
angular momentum of the ( n  + 1)-particle system by 

as for the two-particle system treated above. Again, the 
total orbital angular momentum is 

and the spin part of M i ; , + ’ )  is what is left after subtract- 
ing J 2 ( t t + 1 ) :  

All’ 

Since both A 1  and L are unique, so is S. We now show 
that S may be expressed (nonuniquely) entirely in terms 
of internal operators in the form 

where I(i), Fp(i), X,(i)  E 2:;;;lI ( i )  for some choice of 
internal Lie algebras. The proof is by induction. We have 
already seen that the statement is true for n = 1. Suppose 
that it is true for n. Then 

and Si;,) is orthogonal to Z‘:;, . Now 

where 

+ X,,(n + 1) P ” ,  ( n  + l) /Z(n + 1) 
(46) 

26 
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But 

Substituting these expressions into Eq. (46) and simplify- 
ing, we find 

- - S;;+ I ) ( n )  = x ( 1 1  t 1 )  (n) Fin + 1 ) ( n ) / ~ ( n  + 1 )  (n) 
!J 

where 
- 

(n)  = Z ( n 1  Z (n  + 1) + I (n  + I ) ]  
- 
P y ’ ( n )  = P y ( n  + 1) - P,(n + l ) Z ( t ’ )  

X F + l ’ ( n )  = X F ’  Z(n + 1) - X,(n + 1 ) P )  
- 

It is immediate that these generators are orthogonal to 
2(vr;;11 spanned by Z ( f 2 + 1 )  = 3- Z(n + l), etc. More- 
over, s(;;]) (n)  commutes with SF’; this is because 
S‘&+’.’” (n) is a combination of operators from Zl:,) and 
Z (ra + 1) with which S($ commutes, being by hypothesis 
a combination of internal operators with respect to 
X!,’::. Thus the original statement is true for n + 1 and 
the proof is complete. 

Our next task is the construction of the internal (Lie) 
algebra E(;;1) for the (n i 1)-particle system. By defini- 
tion, it is the set of all operators in the enveloping 
algebra of X ( n + l )  which commute with all of $(:,:,‘I 

spanned by Eq. (44) and (45). Let us suppose that we 
have made a definite choice of internal Lie algebras 
Z(,nn*;I)(l), . . . ,2(y;t1)(n) for our system. Dropping the 
superscript (n + 1) on the understanding that n is fixed 
until further notice, we define 

in analogy with Eq. (42). We have the commutation 
relations 

We may express the spin operators in terms of the A’S: 

s,, (i) = - iA;, (i) A , ,  ( 1 : )  (47) 

It follows from above that 

The basis of the enveloping algebra OeXt of Pext consists 
of the operators I ,  P,, X,, and M,, or, alternately, of 
Z, P,, X,, and SPv. That is to say, every operator in E,,, 
is a polynomial (or a formal limit of such polynomials) in 
operators of either basis set. It is clear that the opera- 
tors A;(i) commute with I ,  Pp, and X, but not with S p v .  
In fact, we have 

as expected. Thus the only internal operators of the 
(n + 1)-particle system with respect to the group P are 
the various Z’s, the Casimir operators of P ,  and the Lorentz 
scalars or invariants constructed from the A-operators. 
We consider the last-mentioned set of internal operators. 
Just as before, we define 

[ ‘ j  = A+ (i) A ( j )  

[#, = A - ( i ) * A - ( j )  

[ I l =  A-(i)oA-(i) 

It is trivial to verify that 

where parentheses denote symmetrizations: 

Moreover, we have 

27 
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In addition to the 6’s there exist further invariants con- 
structed with the help of the antisymmetric tensor p p u :  

7i” iL = d‘”“’A; (i)A, (j)A; (k)A+,(l)  

[A+ (i) A ( j )  A+ (k) A ( l ) ]  

We adopt the convention that an index on is lowered 
whenever the operator A+ associated with that particular 
index is replaced by A-. Thus, e.g., 

?iibl = [ A  (i) A- ( j )  A+ (k) A+ (Z)] 

It should be noted that the various A-operators may freely 
be commuted within the brackets defining 9’s since the 
commutator of two A s  is either zero or involves the 
symmetric metric tensor gpv; the cost of interchanging 
two adjacent A’s is a minus sign. Hence we may always 
write 9’s in one of the following canonical forms: 

In each case the 7’s are completely antisymmetric in both 
upper and lower indices separately. Taking the hermitian 
conjugate of a given 7 amounts to lowering upper and 
raising lower indices, besides interchanging the order of 
all indices; e.g., 

The commutation relations of the 7’s are rather compli- 
cated and will not be needed in this report. 

It may be worthwhile to point out that the Casimir 
operators of Q,,, may be expressed in terms of the 6’s 
and 7’s as follows. From Eq. (33), (34), (47), and (48) 
we find 

1 ” 
F = - A+,!(i)AV, (i) A + ‘ P  ( j )  A-“’ ( j )  2 1.1 I 

where summations over repeatc,d indiccss m’ ondcmtood 
to rim from 1 to 11 .  For the special case n = 1 we have 
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= 4(K: + K; - K i )  

= 4Q 

as stated without proof previously. 

Disregarding the l’s ,  we see that the internal envelop- 
ing algebra cFi , I  is the formal closure of all polynomials 
in the 6’s and 7’s. It should be clear that Etllt is an 
infinite-dimensional Lie algebra and as such is not very 
useful. What we need is a finite-dimensional Lie algebra 
of internal symmetries, an analog of 2:;) in the two- 
particle case discussed above. Such algebra, pint ,  is gen- 
erated by all t i j , t i i j ,  and t i  j ,  i, j = 1,2, . . . , n; the number 
of 6’s is easily seen to be (2n + 1) n. From the commuta- 
tion relations (Eq. 49) one finds that pi,,t  is isomorphic 
to the Lie algebra s p ( n )  of the symplectic group S p ( n )  
(Ref. 50) of 2n X 2n complex unitary matrices A l  obeying 

here hl is the transpose' of hl and 

0 

Jrl = [ ‘0 ] 
I , ,  being the n x n unit matrix. Since S p  (1) is just LA” 
and is contained in every S p  (n), n 1, as a non-compact 
subgroup, it follows that each S p  (n )  is also not compact.” 
The non-compactness of internal symmetry groups we 
have obtained is to be traced back to the Lorentz metric 
(gPY) associated with space-time. 

The set of all [; ( t i 2  in number) generates a maximal 
compact sitbnlgebru of sp (n ) ;  it is just the Lie algebra of 
the unitary group U ( n )  U(1) X S U ( n ) .  All unitary 
representations of U (n) are finite-dimensional, labeled by 
discrete quantum numbers, and are adequately discussed 
in the literature. Before proceeding with an analysis of 
internal symmetries just obtained, we wish to discuss 
how they could be intcqxeted physically. 

\Ye  envisage a situation in which physical one-particlc 
states are described mathc~matically more and more accu- 
rately by increasing the number o f  basic state vectors 

“AS is well known, the compactnrss or noncompactncss of a group 
depends not only on thc commutation relations of its generators 
but  also on their hrhavior under hcrmitian conjugation. 
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lop) from which the state vectors of physical particles 
are constructed. Thus we would have the hierarchy of 
state vectors (or wave functions) +(l), +('), . . . , all 
describing the same given particle but with progressively 
greater detail, i.e., by means of a progressively larger 
number of internal quantum numbers. This hierarchy of 
state vectors is associated with the hierarchy of internal 
groups: 

s p  (1) c s p  (2) c s p  (3) c . * . 

U(1) c U(2) c U ( 3 )  c . . . 
U U U 

Within any fixed-n approximation, the quantum numbers 
associated with U (n) and its subgroups may be used to 
label the state vectors. Since U(n) is not the full sym- 
metry group in this approximation, we expect that U (n)- 
symmetry breaking should be caused by those generators 
of the super-group Sp(n) of U ( n )  which are not in U ( ~ I ) . ' ~  
Just as in the previously discussed case of Sp (l), we shall 
argue that continuous quantum numbers stemming from 
the non-compactness of Sp (n)  will have to be integrated 
out in forming "wave packets" in order that one obtain a 
normalizable internal wave function or state vector. In 
other words, for physical particles, only discrete quantum 
numbers associated with U (n) are available to label state 
vectors. We now see in principle how a "hidden" 
symmetry-breaking mechanism could operate in the 
realm of physical particles. 

We wish now to investigate a possible scheme of label- 
ing internal parts of one-particle state vectors. As we have 
seen, from n + 1 basic Lie algebras a ( i )  we can construct 
one T-external and n T-internal Lie algebras with four- 
momentum operators P,  and Pr( l ) ,  . . . ,Pp(n).  The 
total number of components of these four-vector opera- 
tors is 4(n  + l), precisely the number of diagonal 
operators in Qint  and Qext (omitting the 0's). Disregarding 
P,, S', and Ss, we have to exhibit N = 4n - 2 commuting 
internal operators for each n' 1. 

The case of n = 1 of two basic particles has already 
been adequately discussed. For n = 2 we have to con- 
struct N = 6 operators. Now 

S," = S," (1) + S," (2) 

S,, ( i )  = -i4, (i)A;, ( i )  

"Such breaking should of course be compatible with known exact 
conservation laws. 

It is easily seen that the operators 

1 
F = - 2 SspvSP" = F (1) + F (2) - S p  (1) SP" (2) 

1 
2 F ( l )  = - -s,"(l)sql) 
1 

F (2) = - 2 S," (2) 9" (2) 

1 -  N 

G = - S,, S P Y  G S,, (1) S p y  (2) 2 

are simultaneously diagonalizable. Let 

One verifies that 

[ B , Z k ]  = O ,  k = l , 2 , 3  

Thus one may identify B with the baryon (or, for that 
matter, lepton) number and the Zi with the three compo- 
nents of isospin. As we shall later explain, this identifica- 
tion is not quite unique; we disregard this point for the 
moment. The operators B and Z i  generate 

U(1) x SU(2) 2i U ( 2 )  

It is well known that B, Z 3 ,  and 

form a maximal commuting set of operators for U (2). The 
question now arises whether the sets { F ,  G, F (l), F (2)} 
and {B, Z 3 ,  I'} commute, i.e., whether each operator of 
one set commutes with every operator of the other set. 
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With a little algebra we see that this is not the case. 
Namely, 

[F(i),I’]#O fori  = 1,2  

This is of course fortunate for otherwise we would have 
had seven commuting operators instead of the expected 
maximum of six. If we insist on diagonalizing 12, then we 
must find an extra commuting operator to augment the 
set { F ,  G, B ,  Is, P}. Let 

Then, as is easily verified, 

A* = A 

[A,tj] = 0, i, i = 1,2  

Since B, Z3, and I* are linear or bilinear in the t i , it follows 
that A commutes with the former operators and, of 
course, with F and G, the Casimir operators of Sp(2). 
We are now in a position to introduce eigenvectors of 
our set of eight commuting operators: 

= (1 + v 2  - k2,2kv,u, b, Z(Z + I ) ,L,S(S  + 1) ,p )  

I kvablisp) 

here k,  v ,  s, and p have the values discussed in Section IV 
and 

b = O , t l , + 2 , .  ’ .  

I = O , % , l ,  . ‘ . 

l = - I , - Z + l ; ~ . , I  

The eigenvalues u of A are at least partly continuous 
[from general arguments based on the non-compactness 
of S p  (2)]; the precise spectrum of A does not concern us 
here. Physically meaningful are the discretely normaliza- 
ble internal state vectors of the form 

just as in the previously discussed casc of compositions 
of two basic particles. 

We note that the identification of %(t;  - ti) as the 
third component of physical isospin is arbitrary to within 
the following unitary transformations of the [’s : 

where 

U = exp [-io (A)] 

for some A E sp (2). The “direction” of isospin in the group 
space of S p ( 2 )  is thus completely undetermined by our 
essentially “kinematical” considerations. How, then, is 
this direction to be fixed? We believe that a full answer 
to this question can be given only in the framework of a 
dynamical theory. The following comment might, how- 
ever, be appropriate. We know that S-matrix elements 
have the form (in I S I in) = (out I in). It is clear that one can 
choose the direction of Z3, e.g., arbitrarily for one set of 
state vectors, say, for the incoming ones. The simplest 
such choice would of course be that given by Eq. (50). 
The direction of the third component of isospin for out- 
going vectors would in general be different from that 
for incoming vectors; it would be determined by the 
S-matrix dynamics or, in our theory, simply by an internal 
rotation in the space of an appropriate internal group 
through some angle consistent with crossing principle 
and/or some additional constraints. 

From Eq. (50) we find a formula for the electric charge 
number: 

1 
(59) Q/e  = I ,  + -B 9 = [; = 0, +I, +9, . . . 

in our three-basic particle approximation (n  = 2) of 
physical state vectors. What is the interpretation of [; in 
the n = 1 approximation? One might naively expect 
that [i is still Q/e. Note, however, that now I ,  = 0 and 
hence Q/’e” = ” B  from the above formula. This of course 
is nonsense and simply means that we cannot infer the 
physical significance of [; for n = 1 from that for n = 2. 
Rather, we may arguc a s  follows. Strong interactions 
dominate electromagnctic ones in strength. Thus we may 
expect that the baryon number should manifest itself 
before the electric charge number in any scheme of 
approximation of physical state vectors. On these grounds 
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we identify 6; = 2K with B for n = 1. In general, we shall 
have the following identifications: 

U(1) : B = 5;  

Let us quickly examine the case n = 3. The relevant 
internal groups are Sp(3) and V(3) with a total of 
N = 4 X 3 - 2 = 10 commuting operators: 

B = [; + e + t; 

tion U, according to Eq. (12), has the following effect on 
each of the three basic particles: 

P ,  (i) + Pa (i) 

z (i) + z ( i )  

u: X p ( i ) +  X p ( i )  (i = 1,2,3) 

But this means that external as well as internal operators 
transform non-trivially under the parity operation: 

and similarly for X’s. Now 
Y = t; 

C, = 

1 F = - - S,, S p v  
2 

Now S,, consists of three parts and the sums over 
repeated Latin indices run over 1, 2, 3. C, is just the total 
“F-spin” squared in the terminology of Gell-Mann 
(Ref. 51), while C ,  is the second Casimir operator of 
SU (3). To form normalizable wave packets one now inte- 
grates or sums over the eigenvalues of A,, A*, F, and G. 
Again, there are non-uniqueness problems in identifying 
the physical isospin generators, much as in the previously 
discussed case n = 2. 

It  should now be fairly clear how to handle the case of 
an arbitrary number of basic particles. We shall not 
pursue this matter any further. Instead, let us briefly 
discuss how discrete quantum numbers, such as parity, 
are to be treated in our theory. Consider the n = 2  
approximation of a physical particle. The parity opera- 

Let Ju be the parity operator acting on 6“. Applying it 
to the above state vector, letting 5, + -PI, p2 + - p2 in 
the integrand, and noting that $dP is invariant under 
5+ -5, we find 

The transformation coefficient under the integrand satis- 
fies a set of differential equations in the eight variables 
p ,  and 5. and as such it will have certain symmetry 
properties with respect to the transformation PI, ~ r ,  - p,, 2. 

This is analogous to the well known transformation prop- 
erty (n Isp) = Y,, (n) + ( -)s Y,, (n) under n + -n, where 
n is a unit vector. The precise behavior of (Plj& I spkvablt) 
under PI, .+  -PI..? does not concern us at the moment. 
The important point is that it will transform into itself 
times a phase which may possibly depend not only on s but 
also on the other quantum numbers. This phase 7, what- 
ever it will turn out to be, is to be interpreted as the 
intrinsic (or internal) parity of a particle represented by 
the state vector (Eq. 54).29 It is not unreasonable to guess 
that 7 will depend on b and Z in addition to s. We defer 
further consideration of this question to future work on 
analytical aspects of our theory. 

- 
- 

“More precisely, by a wave packet of such state vectors. 
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How would one obtain parity-violating Poincark- 
invariant interactions in our theory? The answer is easy 
to see. We merely note that the operators ~~j~~ are 
Lorentz pseudoscalars: 

V i i k l  = E F " P ~ A ,  (i) At ( j )A+,  ( k ) A + , ( l )  

4 F P ~ P ~  A ,  (i) A+" ( j )  A+P (k) A+" ( I )  
- - - v i i k 1  

since FP"'u = - P ~ , , ~ ~ .  Parity violation:<" is obtained if the 
Hamiltonian or the S-operator contains terms involving 

Note that also q - q .  50 

odd powers of 7's. We need at least two T-internal Lie 
algebras in order to construct non-vanishing 7's. Since 
strong interactions are governed by a single T-internal 
Lie algebra (Ref. 52), it follows that no parity violation 
is possible for them. 

Under the anti-automorphism 7, each P ,  (i) -+ - P ,  (i), 
zp(i)+ - X p ( i ) ,  and Z(i)+ - I ( ; ) .  Thus Spy-+ - S p y ,  
P ,  (i) F, (i), xp (i) + x,, (i), F ( i )  + - F ( i )  and hence 
#: = [ P ( i ) '  + x ( i ) 2 ] / 2 f ( i )  + -#;. This means that the 
operators S Q, B ,  I I ,  Y acquire a minus sign under y. It 
is therefore quite consistent to regard y as a particle- 
antiparticle conjugation operator in our formalism. 

VII. DISCUSSION 

In summarizing the work and results of preceding 
sections, we shall adopt here a different attitude toward 
our theory. Namely, we shall take the basic group T as 
the point of departure without reviewing the reasons 
which led us to this group; they are adequately dis- 
cussed, we believe, in Sections I1 and IV. 

It may be appropriate to offer a few comments regard- 
ing the nature of T itself. Let us introduce the column 
vector # = col(+ (x), x, I), where 9 is some real-valued 
function of the four-vector x specifying the time and 
position of an event in space-time. Applying to [ the 
matrix (Eq. 36) corresponding to the element (a, u, a,  1) 
of the augmented Poincark group P ,  we find 

X-J x' = lx + a 

+ ( x ) + + ( x ' ) =  + ( x ) + v . I x t - a  

This shows that the action of P on the Lorentz space L 
is just that of the Poincark group P, .  Of course, T trans- 
forms L in the samc way as does the translation sub- 
group T,, of P , .  Thus the customary geometry of flat 
space-time has not been tampered with in going over 
from P, ,  to P and T ,  and this is most gratifying. Yet, 
something new has been added, the function + (x) asso- 
ciated with each point in space-time. At prcwnt wc do 
not tinderstand its physical significance. 

In Section VI we have shown that the rcpresenta- 
tion theory of T yields in a relatively straightforward 

manner the hierarchy of noncompact internal groups 
Sp(1) c S p ( 2 )  c . . . c S p ( n )  c . . . . We have pre- 
sented arguments that only the maximal compact sub- 
groups U ( n )  of each Sp(n)  are of significance in 
providing internal symmetries for physical particles. The 
hierarchy SU(1) c S U ( 2 )  c . . . , related to U(1)  c 
U (2) c . . . in an obvious way, has been considered on 
empirical grounds by Neville (Ref. 53). The relevance of 
unitary groups of low n to particle physics is now quite 
well established. It is true that these groups fail to pro- 
vide exact symmetries, because they are more or less 
badly broken in nature. Nevertheless, they furnish very 
useful approximate classification schemes of particles. It 
will be interesting to see whether a dynamical theory can 
be constructed which will allow one to understand the 
detailed mechanism of symmetry breaking. ' I  What we 
have in mind is a dynamics based purely on the group- 
theoretical methods employed in this work. To see intu- 
itively the feasibility of such approach, we must examine 
the role played in our theory by states of spacelike 
momenta. 

If p is timelike or lightlike, then the state vector 1p;a) 
may be thought to represent a matter wavc of mass 
rn = (p')" and momentum p, with nll other quantum 
numbers indicated by a. On the othc%r hand, if 1) is space- 
like then we have no physical intuition to guide us except 

,"For discussions of S l 7  (3) symmvtry l)rmkiI>g scv Rcf .  54, and 
also Ref.  55-56. 
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the notion that such momenta are somehow associated 
with virtual particles and interactions. To make the pic- 
ture clearer, let us consider the elastic scattering of two 
nucleons through the exchange of a single pion. A dia- 
grammatic representation of this process is given in Fig. l. 
Here V denotes a vertex operator containing form factors, 
gamma matrices, etc. The amplitude for the process is 
proportional to (pz  - rn;)-l, where pg = (pl - p J 2  < 0; 
i.e., the exchanged “pion” carries spacelike momentum. 
To see how spacelike pions would manifest themselves 
in our formalism, let us first distort the diagram of Fig. 1 
into that of Fig. 2. Let la), Ib), and I C )  be the states of 
our scattering system corresponding to the dashed lines 
in Fig. 2. At a the two initial nucleons are both free, and 
their combined state is represented by I a)  = 1 pIaI, pI’a2). 
Subsequently, a pion is emitted or absorbed by nucleon 1, 

Fig. 1 .  Nucleon-nucleon scattering through an  
exchange of a virtual pion 

I 2 

Fig. 2. A redrawing of the diagram of Fig. 1 

and at b we find a state of two free nucleons and one 
virtual pion; thus I b)  = I p,,a,,, pAa5, p 2 a 2 )  . Finally, both 
nucleons are free and no virtual pions are present: 
I C )  = I p,a.,, p4aI). Note that the diagram of Fig. 2 does 
not indicate whether the pion is first emitted by nucleon 1 
and then absorbed by 3 or emitted by 3 and subsequently 
absorbed by 1. That is to say, this diagram gives no 
information about the temporal evolution of the system 
during the interaction. The state vectors la )  and I C )  
represent free stable particles and are perfectly legitimate 
in the strict on-the-mass-shell S-matrix theory of strong 
interactions. Vectors of the form I b) ,  on the other hand, 
are not admitted in this theory, since they contain virtual 
pions for which p $  = rn; is not satisfied. That is to say, 
matrix elements of the form ( b l S l a )  are taboo. In the 
S-matrix theory all masses are kept at fixed physical 
values, and only various invariant energy and momentum 
transfer variables are allowed to vary. In reality, continu- 
ation in external masses frequently has to be resorted to, 
e.g., when dealing with anomalous thresholds. 

We envisage a different kind of “S-matrix theory” 
based on our group-theoretical formalism. Namely, ex- 
ternal as well as internal masses are allowed full freedom 
of variation without any a priori constraints (except for 
an overall energy-momentum conservation). The problem 
now becomes to show, if possible, that only certain special 
values of external masses are consistent with the group 
structure of the theory. Any continuation in either exter- 
nal or internal masses is to be made by means of operators 
of the form exp(-izj-X). The fact that these opera- 
tors have an effect not only on masses but also on various 
other quantum numbers indicates that one may expect 
very intricate dynamical correlations between external 
and internal degrees of freedom of particles. 

Is there any way we can understand the physical sig- 
nificance of the identity operator 1 of the basic Lie 
algebra Z? As noted in Section IV, 2 is a covariant gen- 
eralization of the canonical commutation relations of 
quantum mechanics: 

[ P , , P , ]  = [ X i , X j ]  = 0 

[ P i ,  X j ]  = - s i ,  + [ P p ,  X ” ]  = igpJ 

The appearance of 1 is inescapable if we are to play the 
game of Lie algebras. Physical particle state vectors are 
assumed to be eigenvectors of 1 with unit eigenvalue: 
u = 1. With this choice of u the relation between momen- 
tum and configuration-space wave functions is through 
Fourier transforms involving exp ( k i p  x/A), with A hav- 
ing the conventional value of 1.054 X lo-?: erg sec. It is 
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clear that we could have chosen u to be of any finite 
positive value; instead of R we would have then been 
obliged to use A’ = A/u. If now a physical particle is 
approximated by a composition of n + 1 basic particles, 
then we must have 

n + l  

i = l  
u =  x u i = 1  

where all U, > 0 in accordance with the arguments of 
Section IV. Thus all ui < 1. This fact has some very inter- 
esting consequences for the commutators u of T-internal 
Lie algebras. Suppose a physical particle, in the lowest 
order approximation, is composed of two basic particles. 
Then uI + u2 = 1 and hence 

This means that the internal Lie algebra Z!:), is at least 
four times more “weakly quantized” than the external 
algebra Z:::. Suppose we now take four basic particles 
and use the coupling scheme 

Then, on the average, U ,  N ?4 and so 

us = u, + u2 ’v 2-1 

FS = u,u2 (a, + a,) ’v 2-5 

u,; = u:, + u, ‘v 2-1 

U6 = u3u.l (LT3 + a,) ‘v 2-5 - 

Coupling 5 and 6, we get 

ui = us + u,; = 1 
- 
u; = u>u#; (on + UJ ‘v 2-2 

u, - us t cr,; 5, 2-4 

u7 - U5Ug; (& + G,;) cz 2-14 

-t - - 
--I’ - - - 

Thus we find a rather striking hierarchy of T-internal 
Lie algebras with progressively more and more “classical” 
commutators.:” For larger numbers of basic particles, the 

3’The particular coupling scheme used is irrelevant. Similar con- 
clusions obtain in the case of any coupling scheme although one 
need not have the same set of values of 0’s. 

hierarchy is of course even more striking. Thus, e.g., for 
eight basic particles, we reach ‘v 2-68 2: 3.4 X What 
is the significance of these weak commutators? Can we 
expect these extremely small values of Cr’s to manifest 
themselves in physically interpretable numerical answers? 
We don’t know yet. However, for what they are worth, 
we offer the following speculations bearing on these 
questions. 

Suppose a physical particle is composed of a very large 
number of basic particles. Then it is intuitively reasonable 
to argue that on the average a single basic particle con- 
tributes very little to the internal structure of the com- 
posite particle. In particular, its coupling to the remainder 
of the composite particle is expected to be quite weak in 
the sense that it should not make much difference 
whether one approximates the composite particle by 100 
basic particles or 99, say. If we are content to describe 
only the gross features of internal structure of the physical 
particle, then, as a first approximation, we would pre- 
sumably “split” it into two roughly equal parts and inves- 
tigate structural effects due to their relative motion. 
Interactions between the two parts should be called 
strong, if anything. Now we could subdivide each of the 
two parts and thus get more structure due to additional 
internal modes obtained. If we allow ourselves the luxury 
of classical pictures, we may imagine the situation as 
shown in Fig. 3. Particles 1 and 2 are coupled to form 
the subsystem (12), and similarly for 3 and 4. There are 
three different internal motions shown in this picture, 
namely, the internal motions of subsystems (12) and (34) 
and the relative motion of these subsystems with respect 
to each other. Intuitively, we would expect that the 
coupling between internal modes of (12) and (34) 

Fig. 3. Classical picture of internal motion of a 

basic particles 
composite particle approximated by four 
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(“second-order internal to second-order internal COU- 

pling”) should be weaker than, e.g., between those of 
(12) and [ (12)(34)] (“second-order internal to first-order 
internal coupling”), whatever be the nature’ of these 
couplings. We might further suspect that the strength 
of a particular coupling should be related to the partic- 
ular pair of Lie algebras describing it. To see how this 
could happen we investigate the interaction of two physi- 
cal particles approximated, for the sake of simplicity, by 
a basic particle each. It is possible to show (Ref. 52) that 
the 7‘-matrix elements (34 I TI 12) = T for the reaction 
1 + 2- 3 + 4 are functions of x = j ? / ~ ,  among other 
things. Now 

I 
I 

I x = (p1a, - p,u1)2/Z = [(m:u, + m h )  u - ulU2S]/a 

’ 
where s = (pl + p,)’ .  Suppose the reaction in question 
can proceed via an intermediate particle: 1 + 2- Sa-+ 
3 + 4. Then the coupling constant of this particle to chan- 
nels (12) and (34) (assuming strictly elastic scattering for 
simplicity) is given by (Ref. 57) 

1 
= - f (As) 

U 

where 

d 1 
f ( h )  = - -9Ze- 

dh T ( h )  

Thus g 2  is proportional to u = 2. Since the only way two 
basic particles can interact is strongly (because they have 
no electric charges, etc.), it follows that u + g’ charac- 
terizes the strength of nuclear or strong interactions. The 
function T ( h )  depends on various 0’s only implicitly 
through h = h (u1, ~ ~ , m ~ , m , , s )  and hence so does f ( h ) .  
If / ( A )  is a reasonably slowly varying function of X in 
some neighborhood of values of m,, m,, and s (for fixed 
u1 and u~), corresponding to physical hadron masses (we 
are excluding particles with atomic numbers A > I), then 
the various hadronic coupling constants are of the same 
order of magnitude. This is of course the case experimen- 
tally. We may think of 0 as setting the scale of physical 
coupling constants for strong interactions; the function 
f (A) then accounts for variutions of coupling strength 
between different sets of hadrons. 

It is tempting to speculate that the above interpretation 
of u may be meaningful for the higher and numerically 
smaller members of the hierarchy of commutators of 
T-internal Lie algebras. Should this be the case, one 
would have an attractive scheme of generating extremely 
small coupling constants. 
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APPENDIX A 
Internal Symmetries of a Two-Particle System in the 

Framework of Po 

A system of two free noninteracting particles is repre- 
sented mathematically by the tensor product state vector 

This vector is an eigenvector of twelve commuting oper- 
ators constructed from the basis elements of the Lie 
algebras pIl (1) and PI, (2) of the two particles. Explicitly, 
we diagonalize 

for i = 1,2.  The polarization operators W, = 'h~,ivpoM''PP" 
have the well-known commutation relations 

Alternately, a two-particle system may be characterized 
by the state of its "center of mass" and by the "internal 
configuration" of thc two particles in their c.m. frame. 
The external or c.m. operators 

obey commutation relations identical to those obeyed by 
the operators of each of the individual particles. Thus we 
may simultaneously diagonalize P', P, W', and W(,; to 
complete the specification of the state we must construct 
additional six operators in terms of the basis elcmcmts 
of q,, (1) and Q,, (2). A little experiinvntation r e v d s  that 
the operators 

E".[ = P( i ) '  

A ,  = W ( l ) * P ( 2 )  

A, = \ V ( 2 ) * P ( l )  

OJ, = w(i)' 

commute among themselves and with P,, M,, ,  and of 
course W,. Thus they may simultaneously be diagon- 
alized. The eigenvalues of and W L  are given by 
Eq. (A-2); it remains to investigate those of A,. 

Consider A , .  In the c.m. frame P (1) = pl = -p, = 
-P(2) .  Hence 

X I  = W,, (1) Po (2) - w (1) p (2) 

= WO(l)PO(2) + W ( l ) * P ( l )  

= W,, (1) [PI, (1) + Po (2)l 

where we have used W (1) - P (1) = 0. Now 
frame P,,  = P,,  (1) + PI, (2) is just rn (since 
W,, (1) = IpI Ih,.  It is readily verified that 

where 

A (a ,  b, C )  = a' + b' + C" - 2 (ab + bc 

so that 

in the c.m. 
P = 0) and 

(A-3) 

+ ca) 

('4-4) 

The three masses and A ,  are invariant under all trans- 
formations of P, ,  generated by P ,  and M,, and hence so 
is h ,  and, similarly, h,.  Strictly speaking, Eq. (A-4) holds 
only when applied to state vectors of the form of Eq. (A-1) 
since, otherwise, neither P (1) nor P (2) can be diagonal- 
ized (they fail to commute with W,,, e.g.) .  

Summarizing the prcccding discussion, we see that it is 
possible to introduce the following two-particle state 
vectors labeled by six evtcrnal and six internal quantum 
niimbers: 

I rnpSh;m,s, A,ni,s,A,) 
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Under an arbitrary Poincar6 transformation (a, I) gener- 
ated by the external operators P ,  and M,,  only p and h 
get mixed, the remaining quantum numbers staying fixed. 
The natural question arises whether there exist unitary 
transformations generated by some combinations of P ,  (i) 
and M,, (i) which mix the internal quantum numbers XI 
and x2 (ml, sl, m,, and s2 are necessarily fixed within the 
framework of the Poincar6 group). Clearly, the generators 
of these transformations must be Lorentz scalars or in- 
variants of the form 

A B = q,Bp 

and, of course, polynomials of such invariants. Let us 
denote the set of all hermitian internal operators by & i , , t .  

I t  is possible to show by direct enumeration that the 
following fourteen hermitian operators form the basis B 
of o . i , , t :  

P(1)' W ( l ) * W ( 2 )  w2 

P (1) * P  (2) w (2) * P  (1) [WPW (2) P (2)] 

w (2)' w (2) ' w ('4-5) 

Every element of can be written as a linear combina- 
tion of invariants of the form x, x 0 y, (x 0 y) 0 Z, . . . , with 
x, y, Z,  . . . E B; the Jordan product x o  y is defined by 

1 
2 xoy = - (xy + yx) = (yox) = (xoy)* 

and reduces to the ordinary operator pro,'dict whenever 
x and y commute. 

The commutation relations of the operators (Eq. A-5) 
have the general form 

for Xi,Xj,  . . . €23 with real c's. Clearly, the elements of 
B fail to form a finite-dimensional Lie algebra. Nor does 
there appear any possibility of generating such algebras 
by adjoining to B polynomials of elements in B. The last 
remaining hope is to try to pick out a subset of B gen- 
erating a finite Lie algebra or at least an approximation 
to it which would resemble any of the approximate par- 
ticle symmetries observed in nature. This venture too has 
met with no success. Probably the most serious objection 
of all to the above method of generating internal sym- 
metries is that the internal quantum numbers we have 
obtained have a purely geometrical interpretation as 
masses, spins, and helicities. No alternate maximal abelian 
set of operators appears to be available to replace the one 
employed above. Thus we must admit defeat and look 
for other possibilities. 
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APPENDIX B 
Operator Identities 

In this appendix we collect some formal operator iden- 
tities implicitly used in the text. First, we recall the defi- 
nition of a Lie derivative. For any two operators A,B 
for which the product AB and BA is defined, the operator 

8 ( A ) B =  [A,B]  = A B - B A  (B-1) 

is called the Lie derivative of B with respect to A. Higher 
powers of 8 (A)  are defined by induction: 

We also set 

8” (A )  B = B 

The operator 8 ( A )  has a number of properties which 
are simple consequences of its definition (Eq. B-1). We 
list some of them: 

8 ( A ) A  = 0 

Next, we introduce the exponential operator E (A) ,  
depending on the operator A, by setting 

* 1  
E ( A )  = exp 0 ( A )  = 2 - 0“ ( A )  

, I  ( I  n! 

Some of its properties are the following 

E ( A ) B  = c ’ B e  

E ( A )  E ( B )  C = E ( A )  [ E  ( B )  C ]  

E ( A )  (BIB2.. . B,i) = [ E  ( A )  B,]  [ E  ( A )  B 2 ]  ’ .  . [ E  ( A )  Bill 

E ( A ) E ( B ) C  = E ( E ( A ) B ) E ( A ) C  

E ( - A ) E ( A )  = 1 

E ” ( A ) B =  E ( n A ) B  n = 0 , 1 , 2 , .  . . 
(€3-2) 

If B is an “eigenvector” of 8 ( A )  with “eigenvalue” A,  
Le., if 

8 ( A )  B = AB 

8 (A)  B - B ( B )  A holds, then 

8 (a,A, + (~zA2) B = ai8  (AI) B + (A?) B E ( A )  B = eAB 
( a l ,  aL’ complex) Similarly, if 

6’ ( A )  (p,B, + P 2 B 2 )  = p,8 (A)  B, + p.8 ( A )  B, 8’ ( A )  B = AzB 

then (PI,  P, complex) 

0(A)(BtB,  . . . B,,) = [O(A)B l ]  B, . . . B, E ( A )  B = cosh AB + A-1 sinh A8 ( A )  B 

If f ( B )  is an analytic function of thc operator B, i.e., if it 
has an expansion in powers of B, 

+ Bl [0 ( A )  B,] . . . B,, 
+ .  . .  + BIB, . . . [ 8  ( A )  B,,] 

@ ( A ) B ( B ) C  = 8(B)B(A)C  + 0 ( 8 ( A ) B ) C  
f ( B )  = 5 P I P  

,I ~ I 1  

Herr, by definition, 
then 

8 (A) 8 ( B )  C = 8 ( A )  [ 8  ( B )  C ]  E ( A )  f (B) = f ( E  ( A )  B) 
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APPENDIX C 
Generalized Hilbert Spaces 

Consider the abelian group R of real numbers under 
addition. The space L,  ( - co , w ) of all complex-valued 
Lebesgue-measurable functions f on ( -  03, w )  for which 

is a Hilbert space,J3 henceforth denoted by 6. The inner 
product is given by 

for any pair f ,  g E 6. If (Y E R and f E a, then the mapping 

is easily seen to be a unitary representation of R on @. 
Each f ~ @  thus furnishes a unitary, although in general 
reducible, representation of R.  These representations may 
be decomposed into irreducible components in a well- 
known manner (Ref. 58). Namely, one introduces the 
Fourier transform fof a given f ~ @  by 

to be understood in the sense of limits in the mean; Le., 

4 

f ( p )  = Z.i.m. (2T)-1/5 dx f (x) = Z.i.rn. f n  ( p )  J: A 

if 

4 
The function f is in Q and determines f through the 
inverse transform 

"Strictly speaking L, (- 00, m) is a space of classes of functions 
which differ from each other only on sets of measure zero. 

again in the 2.i.m. sense. Equation (C-4) provides the 
desired decomposition of Eq. (C-2) into a continuous 
direct sum (integral) of one-dimensional unitary repre- 
sentations of R: 

The functions +,(x) = eilrr belong to the representation 
space of R, and, for fixed p ,  transform irreducibly under R:  

(T&) (4 = eijm +P (4 
However, they are not elements of 8 since their norm 
i l + p I I  is infinite; in physical language, plane wave state 
vectors are not normalizable. Thus it is unfortunate but 
true that functions having "nice" transformation prop- 
erties under R are not in the Hilbert space ,$. This 
circumstance is of course quite general, not at all peculiar 
to the group R .  In fact, the representation space of any 
noncompact group will contain unnormalizable vectors. 
As an example, we cite the case of the Lorentz group 
discussed in Section IV. 

In practical applications, it would be very desirable 
to treat the functions + p  and those in 6 on the same 
footing. I.e., one would like to extend 6 to a larger space 
containing the + i s  and equipped with some sort of inner 
product, much like itself. Indeed, it is possible to 
achieve this in a rigorous mathematical manner in terms 
of so-called rigged Hilbert spaces (Ref. 59). Their theory 
is rather elaborate and requires a number of preliminary 
mathematical notions which we have no intent to repro- 
duce here. We shall instead formulate the somewhat 
heuristic concept of a generalized Hilbert space which 
will amply meet our needs. 

Consider the Hilbert space $3 introduced above in 
connection with representations of group R. Let us adjoin 
to Q the eigenvectors + p  of the operator T ,  representing 
elements (YE R and denote the resulting set of functions 
by .&, The inner product in @ may be extended to func- 
tions in a$R by relaxing the requirement that ( f , g )  be 
a complex-valued function of f and g; now it may be a 
distribution. We call QK the generalized Hilbert space 
associated with representations of the group R or simply 
the R-generalized Hilbert space. Elements + p  E are 
called singular elements of Q f c ;  their norms are infinite. 
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The remaining elements are of finite norm and are called 
regular elements of aft. Every regular element is a (con- 
tinuous) linear combination of singular elements accord- 
ing to Eq. (C-4), and every singular element is a limit 

of an almost everywhere convergent sequence of regular 
elements. An example is furnished by 

+,, (x) = lim,,,, e+/" e i p  

APPENDIX D 
Rotation and Lorentz Groups 

This appendix contains a collection of miscellaneous 
results from the representation theories of the three- 
dimensional rotation and the Lorentz groups. 

Matrix elements of the unitary operator U ( R ) ,  Eq. (35), 
are trivially related to the spherical functions DL,, of the 
three-dimensional rotation group: 

Thc d-functions arc' given by Ref. 60: 

[ ( j  + p')! ( i  - p')! ( j  + p)! ( j  - p)!]" 
($y ( P )  = 2 ( -)" 

1' ( j  + p' - ")! ( j  - p - ")! "! (" + p - p')! 

The Wigner rotation operator R ( I ,  p )  for an arbitrary 
Lorentz transformation 2 = ( I , " )  and a given four- 
momentum p = ( p p )  is defined in Ref. 14: 

where L (1)) is a Lorentz transformation which takes a 
particle of momentum 11 to its rest frame: 

Explicit formulas for 1, ( p )  and R (1, 11) in the spinor rep- 
rescmtation havcb bwn givon by Joos (Ref. 61): 

40 

where 

P = &(m + IPOI) 

p' = F(m + I p q )  
p' = l p  

and the ui being the usual Pauli matrices. The complex 
quantities a,, and a are determined by 1 through (Ref. 61 
and 62) 

1+ a,, + a * a  1 N [trl + (2"k ~ E"' - iE'j'2.. 1 , )  U k  1 
N = [4 + (trl)' ~ t r (P)  - ~ F ~ y p " ~ ~ ~ ~ p o ] ~ ' ~ ( '  

summations on Latin and Greek indices are understood 
in these formulas. Here trl = Z;, etc., and 

$1  

From Eq. (D-2) follow the properties 

= F n i x  = 

R Q', b) (1,  p = R (a p )  

R ( I ,  p ) - l  = R (2-1, Ip )  03-5) 

We now give a brief discussion of helicity representa- 
tions of P,, .  Let 

A 

h(P) = M * &  P = PIIPI 

be the helicity operator ( =  W,, (P') ' 5 )  and introduce its 
eigenvectors : 

h 6) I psh) = h I P h )  

If p has the polar form ( p ,  0, +), then (Ref. 63 and 64) 

I psh) = ( H  (1))) I ? ' R S 4  

[ r ( ~  (!,)) = e - i 6 Y , e ~ i e M : ! e ' ~ ~ f , i e ~ i ~ . \ ;  

< = sinh (p/m) (D-6) 
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for an arbitrary rotation R, about the z-axis. Uniqueness 
may be secured if we insist that R’ always have the form where p ,  has an infinitesimal space part in the 3-direction 

SO that h ( C R )  = M , .  The state vector U (1) I psh) can easily 
be shown to have momentum l p ;  hence it must at most 
be a linear combination of the vectors Ilpsh) with differ- 
ent helicities : 

R’ = R, (a’) R ,  (p’) 

where 

U (Rli (.)) = e - i o Y k  k = 1,2,3 

To prove this statement, we use the result (Ref. 66) that 
every l is uniquely expressible as 

Using Eq. (D-6), we get 

Z=RT 

where R is a pure rotation and T a boost. It is clear that 
T may be written as a rotational transform of a boost in 
the x-direction: 

Since the above unitary operator connects two state vec- 
tors of a particle at rest, it must represent a pure spatial 
rotation. We set 

T = R,?ZR, (D-12) 

and call R ,  the Wigner rotation operator appropriate to 
helicity representations. Note that R,, is not the same as 
R given by Eq. (D-2). In fact, 

To see the degree of arbitrariness present in this formula, 
let us suppose that it is valid with R,  replaced by R;. 
Then 

R,.’ZR, = R’,-’ZRk 

The operators in brackets are spatial rotations as may be 
seen from the fact that they leave = ( e r n ,  0) fixed; e.g., 

or 

[ Z ,  R!,.R;.’] = 0 

But this means that 

R!,.R;? = R ,  The spinor representative of H ( p ) ,  and hence of 
L ( p )  H ( p ) ,  may be computed from Eq. (D-4). We note 
that R,, too satisfies the relations of Eq. (D-5). or 

From Eq. (D-7), (D-8), (D-g), and (D-1) we now find 

Thus Eq. (D-12) is arbitrary only within a rotation about 
the z-axis. Now every rotation has a unique factorization 
of the form whence Eq. (D-8) follows by an application of U (u). 

As is well known, every Lorentz transformation 1 may 
be factored into a product of two rotations and a pure 
Lorentz transformation (“boost”; see Ref. 65) along a 
fixed axis, say the z-axis: 

R = R ( a )  R,  ( p )  R, ( y ) ,  0 L a, y < 27r, 0 L p < ii 

in terms of Euler angles. Choosing R ,  (7’) R., = 1 in 
Eq. (D-11) removes the arbitrariness from Eq. (D-10). 

1 = R’ZR (D-10) 

IVriting out Eq. (D-10) in detail, we have This factorization is not unique since one has 

R’ZR = (R’R:,) Z (Bi ’R)  (D-11) 
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where 

0 

1 0 0 
0 cosw 0 sino 

0 -sinw 0 cosw 
R2 (w) = [ 0 0 1 

O 1  1 

1 0 0 
0 cos0 -sine 0 

R3 (0 )  = [ 0 sino cos0 0 
0 0 0 

sinhp 0 0 coshp 1 

As discussed in Section IV, the vectors I kv jp )  for cer- 
tain ranges of values of k, V ,  j ,  and p form a basis for 
irreducible unitary representations of the Lorentz group. 
Spherical functions of this group are defined by the 
right-hand side of 

1 = R‘ZR 

have been calculated by Dolginov and Moskalev (Ref. 67) 
and are given in our notation by 

Here 

2a + 1 = iv 

sinhJ d J +  COS v c  
h ( v ,  5)  = - M., d (cosh <),+l 

J 
M J  (v’ + n‘)” 

n = o 

The C’s are the usual Clebsch-Gordan coefficients, and 
the W’s are Racah functions (Ref. 68). 

APPENDIX E 
Completeness of P 

We recall the definition of a complete Lie algebra The quantities a, b, c, d are antisymmetric in p and v and 
are assumed to be continuous functions of a parameter, 
say t, with the properties 

given in Section IV: 

A Lie algebra 2 is said to be complete if and only if 
each of its automorphisms continuously connected to the 
identity automorphism is generated by some element of 
the enveloping algebra B of 2. 

apvPo = S;S; 

bpvP = c,,P = d,, = 0 

for t = 0. In the most general case, b, C, and d must be 
independent of each other. The first three terms in 
Eq. (E-1) are disposed of immediately by noting that 
they are generated by applying exp [ io (A)] to M,, with 
A in turn proportional to Moo, P,, and X,. There is no 

(E-1) continuous automorphism yielding the last term in 

To show that P is complete, we examine its auto- 
morphisms, one by one. The most general linear trans- 
formation of M,, has the form 

M,, + MGv = aavPo M,, + bavP P ,  + cPvP Xp + d,,Z 
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Eq. (E-1). For suppose there were one. Then, schemati- 
cally, we should have 

[ M ' ,  M'] = iM' 

But M' = aM + dZ gives 

[ M', M' ]  = ia'M # iM' 

a contradiction. 

Next, consider the transformations3' 

P,+ P;  = a," P ,  + b," Xu + c,Z + dpuP M , ,  
(E-2) 

The first three terms are obtained by applying to P ,  the 
operator exp [io ( A ) ]  with A in turn proportional to Moo, 
X,Xp/Z, and X,. We show now that there is no auto- 
morphism of yielding the last term in Eq. (E-2). We 
set b = c = 0 in Eq. (E-2) and rewrite this transformation 
in the more convenient form 

p,+ p; = e i e ( . L t i  P ,  = a,, ( t )  P" + bPPY ( t )  MYP 
(E-3) 

for some A in the enveloping algebra of 9. Here 

a,, ( t )  = g,, + a p t  + 0 (t') 

bPUP ( t )  = P p p t  + 0 (t') 

3'We ignore the trivially generated scale transformations (Sec. IV). 

and 

b,v ( t )  = - bPPV 0) 
P P P  = - P P P v  (E-4) 

To order t ,  we have 

P;  1 P ,  + (apuPY + PPVpMYP)t + 0 (t') 

= P ,  + i [ A , P , ]  t + O ( t 2 )  

or 

[A,Pp]  = --i(apvP" + PpVpM"P) 

Using the Jacobi identity for the triple A, P,, P,, we find 

( P P P U  - PW,) PP = 0 
or 

P P P  = P P V ,  (E-5) 

Using Eq. (E-4) and (E-5) repeatedly we get 

P P V  = P P Y P  = -Pp,'Y = - P w  
= P V P P  = P P P U  = -P,v 

Thus PpYp 0 and hence Eq. (E-3) cannot be a continu- 
ous automorphism of 9 yielding terms proportional 
to M,,. 

The transformations X,+ X ;  are reduced to those of 
P ,  by the duality between P and X. This completes the 
proof of completeness of 9. 
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APPENDIX F 

Transformation Coefficients Between the Basis Vectors 
of 4 (PI and ,@(P”) 

In this appendix we shall compute the transformation 
coefficients between the basis vectors I ukvpsh) and 
I u k v w p )  spanning representation Hilbert spaces of groups 
P and P”. Both vectors are eigenvectors of the same set 
of commuting operators save two, namely W’ and 
W,(P’)-l~G vs S’ and S,. It is therefore clear that the 
transformation coefficients will have the form 

Consider now the quantity 

where A collectively dcnotcs the quantum numbers 
{a, k, v } .  Assuming that TI?, ? I , ,  > 0, we havc. 

where 1 = CY. On the other hand, 

exp ( - io) : M 2) = exp ( - io): S 2) ex11 ( ~ L: L/2) 

according to Eq. (22). Thus 

Thr action of ex11 ( -  L : L ,  2) on I p ~ h ) ,  is quite compli- 
cated. However, it is quite simple to sec’ its effect on 
I p’j’p‘)A since the operator I; conimutcbs with all the 
operators in wliich this vcbctor is diagonal c.xeept P, , .  No\\, 

Thus w c  may sct 

It follows that 

(F-3) 

Comparing Eq. (F-2) and (F-3), multiplying through 
by lJ;),,,& (1,p)) summing on h, and then dropping the 
primes on la“, we find 

This result shows how transformation coefficients behave 
under Lorentz transformations. If we knew a coefficient 
in a pnrticulur frame, then the above formula would give 
it for arbitrary vectors 11 which can 11c reached from this 
particular frame by  proper orthochronoiis Lorentz trans- 
formations. For this piirpose, consider the special case 
of 11 = (m, Fe,) ,  F + 0’. One finds 

Thus 

and comparing with Eq. (F-l), w c a  find 

wlicw we have now set 1pIi 11. We see that thc 
AI-function is indrpendent of 0; accordingly, we havc 
omitted this label. The Lorentz transformation 1 is deter- 
mined wholly by 11: 1 ’ takes 11 to its rest frame with 
pw =- F e < .  Similar expressions for the AI-functions may be 
derived for spacelike and lightlik(, momenta p ;  however, 
w c  shall have no occasion to IISV t h n  and hence omit 
their derivation. 
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We next wish to consider the transformation properties 
of the states l~kvpsh) under the unitary transformation 
U (0) = exp ( - io  ax). We have 

But by Eq. (31) 

Thus 

Now 

where 

Thus 

This formula is valid provided the four-vector p + au is of 
the same kind as p ,  i.e., ( p  + au):! > 0 and ( p  + O U ) ,  > 0. 
If the transformation U ( u )  takes p into a different kind 
of vector, then one must modify the 2R-functions by re- 
placing the D’s by spherical functions appropriate to the 
little group of the transformed vector p + m. The same 
procedure must be used if the initial vector p is not of 
the type considered above. 
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